Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
3301 results found. Sorted by relevance | date | title .
E-Book/E-Doc
Author Dong, Xiaohu.

Title Hybrid enhanced oil recovery processes for heavy oil reservoirs / Xiaohu Dong, Huiqing Liu, Zhangxin Chen.

Imprint Amsterdam : Elsevier, 2021.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
still image sti rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Developments in Petroleum Science ; v. 73
Contents Front Cover -- Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs -- Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs -- Copyright -- Contents -- 1 -- Introduction to hybrid enhanced oil recovery processes -- 1.1 Introduction to heavy oil and oil sands reservoirs -- 1.1.1 Distribution of heavy oil resources -- 1.1.2 Characteristics of heavy crude oil -- 1.1.3 New classification of heavy oil reservoirs -- 1.2 Steam-based recovery processes -- 1.2.1 Cyclic steam stimulation (huff n' puff) -- 1.2.2 Steam flooding (steam drive) -- 1.2.3 Steam-assisted gravity drainage -- 1.3 Concepts of hybrid enhanced oil recovery processes -- 1.4 Multicomponent and multiphase fluids -- 1.5 Hybrid thermo-solvent processes -- 1.5.1 Liquid addition to steam for enhancing recovery -- 1.5.2 Solvent enhanced steam flooding -- 1.5.3 Expanding solvent-steam-assisted gravity drainage -- 1.5.4 Steam-alternating solvent -- 1.6 Hybrid thermal-noncondensable gas processes -- 1.6.1 Noncondensable gas-cyclic steam stimulation processes -- 1.6.2 Hybrid steam-noncondensable gas process as poststeam flooding process -- 1.6.3 Noncondensable gas-steam-assisted gravity drainage process -- 1.7 Hybrid thermochemical processes -- 1.7.1 Noncondensable gas-foam -- 1.7.2 High-temperature gel -- 1.7.3 Surfactant assisted-steam-assisted gravity drainage -- 1.7.4 Chemical additive and foam-assisted steam-assisted gravity drainage -- 1.8 Field implementation of hybrid enhanced oil recovery processes -- 1.8.1 Field tests of hybrid thermo-solvent processes -- 1.8.1.1 Liquid addition to steam for enhancing recovery process -- 1.8.1.2 Expanding solvent-steam-assisted gravity drainage process -- 1.8.2 Field tests of hybrid thermal-noncondensable gas processes -- 1.8.2.1 N2-cyclic steam stimulation process.
1.8.2.2 Flue gas/multiple thermal fluids-cyclic steam stimulation process -- 1.8.3 Field tests of hybrid thermochemical processes -- 1.8.31 Noncondensable gas-foam process -- 1.8.3.2 High-temperature gel process -- 1.8.3.3 New hybrid thermochemical processes -- References -- 2 -- Existing problems for steam-based enhanced oil recovery processes in heavy oil reservoirs -- 2.1 Current status of steam-based enhanced oil recovery processes -- 2.2 Steam overlap -- 2.2.1 Characteristics of steam overlap -- 2.1.1.1 Linear displacement process of steam injection -- 2.1.1.2 Radial displacement process of steam injection -- 2.2.2 Experimental test of steam overlap -- 2.2.2.1 Experimental method -- 2.2.2.2 Experimental results -- 2.3 Steam breakthrough -- 2.3.1 Characteristics of steam breakthrough -- 2.3.2 Mechanisms of steam breakthrough -- 2.3.3 Volume and strength of steam breakthrough -- 2.3.3.1 Volume of steam breakthrough -- 2.3.3.2 Permeability of steam breakthrough path -- 2.4 Fine migration -- 2.4.1 Introduction of fine migration in steam injection process -- 2.4.1.1 Source of solid particles -- 2.4.1.2 Fine migration by mechanical interaction -- 2.4.1.3 Fine migration by chemical reactions -- 2.4.2 Experimental tests of fine migration -- 2.4.2.1 Experimental method -- 2.4.2.2 Experimental results -- 2.5 Mineral dissolution and transformation -- 2.5.1 Characteristics of mineral dissolution and transformation -- 2.5.1.1 Mechanisms of mineral transformation -- 2.5.1.2 Mechanisms of rock-condensate reactions -- 2.5.1.2.1 Kaolinite -- 2.5.1.2.2 Montmorillonite -- 2.5.1.2.3 Carbonate minerals -- 2.5.1.2.4 Fine quartz -- 2.5.1.3 Mechanisms of formation damage caused by mineral transformation -- 2.5.1.3.1 Permeability reduction caused by mineral dissolution and precipitation -- 2.5.1.3.2 Serious fine migration caused by mineral transformation.
2.5.2 Experimental tests of mineral dissolution and transformation -- 2.5.2.1 Dissolution of quartz grains -- 2.5.2.2 Dissolution of clay minerals -- 2.5.2.3 Dissolution of mixed fine grains -- 2.6 Clay swelling -- 2.6.1 Effect of clay minerals -- 2.6.2 Mechanisms and sensitivity of clay swelling -- 2.6.2.1 Mechanisms of clay swelling -- 2.6.2.1.1 Surface hydration force -- 2.6.2.1.2 Osmotic hydration force -- 2.6.2.1.3 Capillary force -- 2.6.2.2 Sensitive factors for clay swelling -- 2.6.2.2.1 Effect of crystal location on a hydration film -- 2.6.2.2.2 Effect of clay species on hydration behavior -- 2.6.2.2.3 Effect of exchangeable cation on hydration behavior -- 2.6.3 Migration of clay grains -- 2.6.3.1 Critical salinity -- 2.6.3.2 Critical flow rate -- 2.7 Water coning -- 2.7.1 Evaluation methods of water coning behavior -- 2.7.1.1 Evaluation method of recovery performance -- 2.7.1.2 Evaluation method of Hall's curve -- 2.7.1.2.1 Theory of Hall's curve in vertical wells -- 2.7.1.2.1.1 Theory of Hall's curve in horizontal wells -- 2.7.1.3 Numerical simulation of water coning behavior for different heavy oil reservoirs -- 2.7.2 Prohibition methods of water coning -- 2.8 Other steam-rock interactions -- 2.8.1 Asphaltene deposition -- 2.8.2 Wettability alteration -- 2.8.3 Emulsification -- 2.9 Remaining oil saturation distribution -- 2.9.1 Macroscopic distribution of remaining oil saturation -- 2.9.2 Microscopic distribution of remaining oil saturation -- 2.10 Discussion of enhanced oil recovery research directions -- 2.10.1 Enhanced oil recovery research directions after cyclic steam stimulation process -- 2.10.1.1 Improving the performance of reservoir heating -- 2.10.1.2 Improving the performance of oil viscosity reduction -- 2.10.2 Enhanced oil recovery research directions after steam flooding process.
2.10.3 Enhanced oil recovery research directions after steam-assisted gravity drainage process -- References -- 3 -- Calculations of wellbore heat loss -- 3.1 Introduction to wellbore heat loss -- 3.1.1 Wellbore heat loss in a single-pipe wellbore configuration -- 3.1.2 Wellbore heat loss in a dual-pipe wellbore configuration -- 3.2 Configuration of vertical steam injection wells -- 3.2.1 Thermal insulation pipes -- 3.2.2 Thermal recovery packers -- 3.2.3 N2 thermal insulation process in annulus space -- 3.3 Configuration of horizontal steam injection wells -- 3.3.1 Onshore horizontal wellbore configuration -- 3.3.2 Offshore horizontal wellbore configuration -- 3.4 Types of heat transfer -- 3.4.1 Heat conduction -- 3.4.2 Heat convection -- 3.4.3 Heat radiation -- 3.5 Wellbore heat loss models in pure steam injection processes -- 3.5.1 Assumptions -- 3.5.2 Pressure drop model -- 3.5.3 Heat transfer models of single and dual-pipe well configurations -- 3.5.3.1 Single-pipe wellbore configuration -- 3.5.3.2 Concentric dual-pipe wellbore configuration -- 3.5.3.3 Parallel dual-pipe wellbore configuration -- 3.5.4 Steam quality model -- 3.5.5 Intermediate parameters treatment -- 3.5.5.1 Thermophysical properties of a formation -- 3.5.5.2 Frictional resistance coefficient in gas-liquid two-phase flow -- 3.5.5.3 Simplification of annulus flow -- 3.5.5.4 Correlation for saturated steam -- 3.5.6 Case study -- 3.5.6.1 Differences among three configurations -- 3.5.6.2 Results of concentric configuration -- 3.5.6.3 Results in a parallel configuration -- 3.5.7 Optimization of operation parameters -- 3.6 Wellbore heat loss models for steam-NCG coinjection process -- 3.6.1 Assumptions -- 3.6.2 Models for single gas-phase flow process -- 3.6.2.1 Pressure drop model -- 3.6.2.2 Heat transfer model -- 3.6.3 Models for gas-liquid two-phase flow process.
3.6.3.1 Pressure drop model -- 3.6.3.2 Steam quality model -- 3.6.3.3 Heat transfer model -- 3.6.4 Intermediate parameters treatment -- 3.6.4.1 Density of a fluid mixture -- 3.6.4.2 Viscosity of a fluid mixture -- 3.6.5 Case study -- 3.6.6 Optimization of operation parameters -- 3.7 Wellbore heat loss models for offshore wellbore configurations -- 3.7.1 Model development -- 3.7.2 Case study -- 3.7.2.1 Pure (saturated) steam injection process -- 3.7.2.2 Steam-NCG coinjection process -- 3.8 Discussion on wellbore heat loss -- References -- 4 -- Heat and mass transfer behavior between wellbores and reservoirs -- 4.1 Flow behavior of heavy oil in porous media -- 4.1.1 Introduction to heavy oil properties in porous media -- 4.1.2 Experimental tests on heavy oil flow behavior in porous media -- 4.1.2.1 Experimental method -- 4.1.2.2 Experimental results -- 4.2 New productivity models for thermal wells -- 4.2.1 Productivity model for vertical wells -- 4.2.2 Productivity model for horizontal wells -- 4.2.3 Evaluation on productivity of thermal wells -- 4.3 Experimental tests for steam conformance along wellbores -- 4.3.1 Experimental method -- 4.3.2 Experimental results -- 4.3.2.1 General behavior of hot fluids flow along a wellbore -- 4.3.2.2 Effect of well configuration -- 4.3.2.3 Effect of hot fluid type -- 4.4 Mathematical models for pure steam injection processes -- 4.4.1 Assumptions -- 4.4.2 Model development -- 4.4.2.1 Mass conservation equation -- 4.4.2.2 Momentum conservation equation: -- 4.4.2.3 Energy conservation equation -- 4.4.2.4 Treatment of intermediate parameters -- 4.4.2.4.1 Radial heat transfer behavior -- 4.4.2.4.2 Equation of steam flow in reservoirs -- 4.4.2.4.3 Constraints for steam mass flow along wellbores -- 4.4.3 Simulation procedure -- 4.4.4 Case study -- 4.4.4.1 Laboratory-scale simulation -- 4.4.4.2 Field-scale simulation.
Subject Enhanced oil recovery.
Pétrole -- Récupération assistée.
Enhanced oil recovery
Added Author Liu, Huiqing.
Chen, Zhangxin.
Other Form: Print version: Dong, Xiaohu. Hybrid enhanced oil recovery processes for heavy oil reservoirs. Amsterdam : Elsevier, 2021 0128239549 9780128239544 (OCoLC)1258782216
ISBN 9780128242278 (electronic bk.)
0128242272 (electronic bk.)
0128239549
9780128239544
9780128239544
Standard No. AU@ 000070277697
UKMGB 020357752
AU@ 000071363644

 
    
Available items only