Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Ardebili, Haleh, author.

Title Encapsulation technologies for electronic applications / Haleh Ardebili, Jiawei Zhang, Michael G. Pecht.

Publication Info. Oxford, United Kingdom : William Andrew, [2019]

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition Second edition.
Description 1 online resource : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Materials and processes for electronic applications series
Materials and processes for electronic applications series.
Note Online resource; title from PDF title page (EBSCO, viewed October 19, 2018).
Bibliography Includes bibliographical references and index.
Summary Encapsulation Technologies for Electronic Applications, Second Edition, offers an updated, comprehensive discussion of encapsulants in electronic applications, with a primary emphasis on the encapsulation of microelectronic devices and connectors and transformers. It includes sections on 2-D and 3-D packaging and encapsulation, encapsulation materials, including environmentally friendly 'green' encapsulants, and the properties and characterization of encapsulants. Furthermore, this book provides an extensive discussion on the defects and failures related to encapsulation, how to analyze such defects and failures, and how to apply quality assurance and qualification processes for encapsulated packages. In addition, users will find information on the trends and challenges of encapsulation and microelectronic packages, including the application of nanotechnology. Increasing functionality of semiconductor devices and higher end used expectations in the last 5 to 10 years has driven development in packaging and interconnected technologies. The demands for higher miniaturization, higher integration of functions, higher clock rates and data, and higher reliability influence almost all materials used for advanced electronics packaging, hence this book provides a timely release on the topic.
Contents Front Cover -- Encapsulation Technologies for Electronic Applications -- Copyright -- Contents -- About the authors -- Chapter 1: Introduction -- 1.1. Introduction -- 1.2. Historical overview -- 1.3. Electronic packaging -- 1.4. Encapsulated microelectronic packages -- 1.4.1. 2D packages -- 1.4.1.1. Through-hole mounted packages -- 1.4.1.2. Surface-mounted packages -- 1.4.1.3. Substrate packages -- 1.4.1.4. Multichip module packages -- 1.4.2. 3D packages -- 1.4.2.1. Stacked die packages -- 1.4.2.1.1. 3D Chip-level packages -- 1.4.2.1.2. 3D wafer-level packages -- 1.4.2.2. Stacked packages -- 1.4.2.3. Fan-out wafer-level packages (FO-WLPs) -- 1.4.2.4. Flexible and foldable packages -- 1.5. Hermetic packages -- 1.5.1. Metal packages -- 1.5.2. Ceramic packages -- 1.6. Encapsulants -- 1.6.1. Plastic molding compounds -- 1.6.2. Other plastic encapsulation methods -- 1.7. Plastic versus hermetic packages -- 1.7.1. Size and weight -- 1.7.2. Performance -- 1.7.3. Cost -- 1.7.4. Hermeticity -- 1.7.5. Reliability -- 1.7.6. Availability -- 1.8. Summary -- References -- Further Reading -- Chapter 2: Plastic encapsulant materials -- 2.1. Introduction -- 2.2. Chemistry overview -- 2.2.1. Epoxies -- 2.2.2. Silicones -- 2.2.3. Polyurethanes -- 2.2.4. Phenolics -- 2.3. Molding compounds -- 2.3.1. Resins -- 2.3.2. Curing agents or hardeners -- 2.3.3. Accelerators -- 2.3.4. Fillers -- 2.3.5. Coupling agents -- 2.3.6. Stress-relief additives -- 2.3.7. Flame retardants -- 2.3.8. Mold-release agents -- 2.3.9. Ion-trapping agents -- 2.3.10. Coloring agents -- 2.3.11. Market conditions and manufacturers of encapsulant materials -- 2.3.12. Material properties of commercially available molding compounds -- 2.3.12.1. Nitto Denko -- 2.3.12.2. Sumitomo Bakelite -- 2.3.12.3. Plaskon -- 2.3.13. Materials development -- 2.4. Glob-top encapsulants.
2.5. Potting and casting encapsulants -- 2.5.1. Dow corning materials -- 2.5.2. General electric materials -- 2.6. Underfill encapsulants -- 2.7. Printing encapsulants -- 2.8. Environment-friendly or ``green´´ encapsulants -- 2.8.1. Toxic flame retardants -- 2.8.2. Green encapsulant material development -- 2.8.2.1. Green materials with nonhalogenated flame retardants -- 2.8.2.2. Green materials without flame retardants -- 2.9. Summary -- References -- Further Reading -- Chapter 3: Encapsulation process technology -- 3.1. Introduction -- 3.2. Molding technology -- 3.2.1. Transfer molding -- 3.2.1.1. Molding equipment -- 3.2.1.2. Transfer molding process -- 3.2.1.3. Molding simulation -- 3.2.1.4. Film-assisted molding technologies -- 3.2.2. Injection molding -- 3.2.3. Reaction-injection molding -- 3.2.4. Compression molding -- 3.2.4.1. Compression molding for large-area panel-level packaging -- 3.2.5. Comparison of molding processes -- 3.3. Glob-topping technology -- 3.4. Potting and casting technology -- 3.4.1. One-part encapsulants -- 3.4.2. Two-part encapsulants -- 3.5. Underfilling technology -- 3.5.1. Conventional flow underfill -- 3.5.2. No-flow underfill -- 3.6. Printing encapsulation technology -- 3.7. Encapsulation of 2D wafer-level packages -- 3.8. Encapsulation of 3D packages -- 3.9. Dual side molding -- 3.10. Encapsulation of MEMS -- 3.11. Cleaning and surface preparation -- 3.11.1. Plasma cleaning -- 3.11.2. Deflashing -- 3.12. Summary -- References -- Chapter 4: Injection molding -- 4.1. Introduction -- 4.2. Injection molding -- 4.2.1. Theoretical models -- 4.2.2. Multicavity pressure control -- 4.2.3. Reaction-injection molding -- 4.3. Fluid-assisted injection molding -- 4.4. Cavity direct injection molding -- References -- Chapter 5: Compression encapsulation -- 5.1. Introduction -- 5.2. Mold solutions.
5.3. Advantages of compression molding -- 5.4. Compression molding process -- 5.4.1. Clamping compression mold -- 5.4.2. Minimum compound compression mold -- 5.4.3. Compression molding compounds -- 5.4.3.1. Flow-free and thin mold compound properties -- 5.4.3.2. Single-press compression molding system -- 5.4.3.3. Mass production systems -- 5.4.4. Microcompression molding -- 5.5. System-in-package encapsulation using compression molding -- 5.5.1. Double-sided compression molding process -- 5.6. Wafer-level compression molding -- 5.7. Summary -- References -- Further reading -- Chapter 6: Characterization of encapsulant properties -- 6.1. Introduction -- 6.2. Manufacturing properties -- 6.2.1. Spiral flow length -- 6.2.2. Gelation time -- 6.2.3. Bleed and flash -- 6.2.4. Rheological compatibility -- 6.2.5. Polymerization rate -- 6.2.6. Curing time and temperature -- 6.2.7. Hot hardness -- 6.2.8. Postcure time and temperature -- 6.3. Hygrothermomechanical properties -- 6.3.1. Coefficient of thermal expansion and glass transition temperature -- 6.3.2. Thermal conductivity -- 6.3.3. Flexural strength and modulus -- 6.3.4. Tensile strength, elastic and shear modulus, and %elongation -- 6.3.5. Adhesion strength -- 6.3.6. Moisture content and diffusion coefficient -- 6.3.6.1. Fickian diffusion -- 6.3.6.2. Non-Fickian diffusion -- 6.3.7. Coefficient of hygroscopic expansion -- 6.3.8. Gas permeability -- 6.3.9. Outgassing -- 6.4. Electrical properties -- 6.5. Chemical properties -- 6.5.1. Ionic impurity (contamination level) -- 6.5.2. Ion diffusion coefficient -- 6.5.3. Flammability and oxygen index -- 6.6. Summary -- References -- Chapter 7: Encapsulation defects and failures -- 7.1. Introduction -- 7.2. Overview of package defects and failures -- 7.2.1. Package defects -- 7.2.2. Package failures -- 7.2.3. Classification of failure mechanisms.
7.2.4. Contributing factors -- 7.3. Encapsulation defects -- 7.3.1. Wire sweep -- 7.3.2. Paddle shift -- 7.3.3. Warpage -- 7.3.4. Die cracking -- 7.3.5. Poor die attachment -- 7.3.6. Delamination -- 7.3.7. Voids -- 7.3.8. Nonuniform and poor encapsulation material -- 7.3.9. Flash -- 7.3.10. Foreign particles -- 7.3.11. Incomplete cure -- 7.4. Encapsulation failures -- 7.4.1. Delamination -- 7.4.2. Vapor-induced cracking (popcorning) -- 7.4.3. Brittle fracture -- 7.4.4. Ductile fracture -- 7.4.5. Fatigue fracture -- 7.5. Failure accelerators -- 7.5.1. Moisture -- 7.5.2. Temperature -- 7.5.3. Exposure to contaminants and solvents -- 7.5.4. Residual stresses -- 7.5.5. General environmental stress -- 7.5.6. Manufacturing and assembly loads -- 7.5.7. Combined load-stress conditions -- 7.5.8. Degradation mechanisms subjected to isothermal temperature -- 7.6. Microsystem sensor failure -- 7.7. Summary -- References -- Chapter 8: Defect and failure analysis techniques for encapsulated microelectronics -- 8.1. Introduction -- 8.2. General defect and failure analysis procedures -- 8.2.1. Electrical testing -- 8.2.2. Thermal emission analysis for shorted failure isolation -- 8.2.3. Nondestructive evaluation -- 8.2.4. Destructive evaluation -- 8.2.4.1. Analytical testing of the encapsulant material -- 8.2.4.2. Decapsulation (removal of the encapsulant) -- 8.2.4.3. Internal examination -- 8.2.4.4. Selective layer removal -- 8.2.4.5. Locating the failure site and identifying the failure mechanism -- 8.2.4.6. Simulation testing -- 8.3. Optical microscopy -- 8.4. Scanning acoustic microscopy -- 8.4.1. Imaging modes -- 8.4.2. C-mode scanning acoustic microscope -- 8.4.3. Scanning laser acoustic microscope -- 8.4.4. Case studies -- 8.4.4.1. C-mode imaging of delaminations in a 40-pin PDIP -- 8.4.4.2. Rapid screening for defects using THRU-scan imaging.
8.4.4.3. Nondestructive cross-section analysis of plastic-encapsulated devices using Q-BAM and TOF imaging -- 8.4.4.4. Production rate screening using tray-scan imaging -- 8.4.4.5. Molding compound characterization -- Evaluation checklist: -- 8.5. X-ray microscopy -- 8.5.1. X-ray generation and absorption -- 8.5.2. X-ray contact microscope -- 8.5.3. X-ray projection microscope -- 8.5.4. High-resolution scanning X-ray diffraction microscope -- 8.5.5. Case study: Encapsulation in plastic-encapsulated devices -- 8.6. X-ray fluorescence spectroscopy -- 8.7. Electron microscopy -- 8.7.1. Electron-specimen interaction -- 8.7.2. Scanning electron microscopy -- 8.7.3. Environmental scanning electron microscopy (ESEM) -- 8.7.4. Transmission electron microscopy -- 8.8. Atomic force microscopy -- 8.9. Infrared microscopy -- 8.10. Selection of failure analysis techniques -- 8.11. Summary -- References -- Chapter 9: Qualification and quality assurance -- 9.1. Introduction -- 9.2. A brief history of qualification and reliability assessment -- 9.3. Qualification process overview -- 9.4. Virtual qualification -- 9.4.1. Life-cycle loads -- 9.4.2. Product characteristics -- 9.4.3. Application requirements -- 9.4.4. Reliability prediction using the PoF approach -- 9.4.5. Failure modes, mechanisms, and effects analysis (FMMEA) -- 9.5. Product qualification -- 9.5.1. Strength limits and highly accelerated life test -- 9.5.2. Qualification requirements -- 9.5.3. Qualification test planning -- 9.5.4. Modeling and validation -- 9.5.5. Accelerated testing -- 9.5.6. Reliability assessment -- 9.6. Qualification accelerated tests -- 9.6.1. Steady-state temperature test -- 9.6.2. Thermal cycling test -- 9.6.3. Tests that include humidity -- 9.6.4. Solvent resistance test -- 9.6.5. Salt atmosphere test -- 9.6.6. Flammability and oxygen index test -- 9.6.7. Solderability test.
Subject Electronic apparatus and appliances -- Plastic embedment.
Encapsulation (Électronique)
TECHNOLOGY & ENGINEERING -- Mechanical.
Electronic apparatus and appliances -- Plastic embedment
Genre/Form Electronic book.
Added Author Zhang, Jiawei, author.
Pecht, Michael, author.
Other Form: Print version: Ardebili, Haleh. Encapsulation technologies for electronic applications. Second edition. Oxford, United Kingdom : William Andrew, [2019] 0128119780 9780128119785 (OCoLC)1007042873
ISBN 9780128119792 (electronic bk.)
0128119799 (electronic bk.)
9780128119785
0128119780
Standard No. AU@ 000064468428
AU@ 000065196150

 
    
Available items only