Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book

Title 5G physical layer : principles, models and technology components.

Publication Info. London : Academic Press, 2018.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (xix, 324 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Online resource; title from PDF title page (EBSCO, viewed October 3, 2018).
Includes index.
Summary 5G Physical Layer: Principles, Models and Technology Components explains fundamental physical layer design principles, models and components for the 5G new radio access technology - 5G New Radio (NR). The physical layer models include radio wave propagation and hardware impairments for the full range of frequencies considered for the 5G NR (up to 100 GHz). The physical layer technologies include flexible multi-carrier waveforms, advanced multi-antenna solutions, and channel coding schemes for a wide range of services, deployments, and frequencies envisioned for 5G and beyond. A MATLAB-based link level simulator is included to explore various design options.
Contents Front Cover -- 5G Physical Layer -- Copyright -- Contents -- Acknowledgments -- List of Acronyms -- 1 Introduction: 5G Radio Access -- 1.1 Evolution of Mobile Communication -- 1.2 5G New Radio Access Technology -- 1.3 5G NR Global View -- 1.3.1 5G Standardization -- 1.3.2 Spectrum for 5G -- 1.3.3 Use Cases for 5G -- eMBB: -- URLLC: -- mMTC: -- 1.3.4 5G Field Trials -- 1.3.5 5G Commercial Deployments -- 1.4 Preview of the Book -- References -- 2 NR Physical Layer: Overview -- 2.1 Radio Protocol Architecture -- 2.2 NR PHY: Key Technology Components -- 2.2.1 Modulation -- 2.2.2 Waveform -- 2.2.3 Multiple Antennas -- 2.2.4 Channel Coding -- 2.3 Physical Time-Frequency Resources -- 2.4 Physical Channels -- 2.5 Physical Signals -- 2.6 Duplexing Scheme -- 2.7 Frame Structure -- 2.8 PHY Procedures and Measurements -- 2.9 Physical Layer Challenges -- 2.9.1 Propagation Related Challenges -- 2.9.2 Hardware Related Challenges -- References -- 3 Propagation & -- Channel Modeling -- 3.1 Propagation Fundamentals -- 3.1.1 Electromagnetic Waves -- 3.1.2 Free-Space Propagation -- 3.1.3 Scattering and Absorption -- 3.2 Propagation Channel Characterization -- 3.2.1 Frequency-Delay Domain -- 3.2.2 Doppler-Time Domain -- 3.2.3 Directional Domain -- 3.3 Experimental Channel Characteristics -- 3.3.1 Measurement Techniques -- 3.3.1.1 Continuous Wave -- 3.3.1.2 Vector Network Analyzer -- 3.3.1.3 Correlation-Based Channel Sounding -- 3.3.1.4 Directional Characteristics -- 3.3.2 Analysis Methods -- 3.3.2.1 Spectral Analysis -- 3.3.2.2 Superresolution Methods -- 3.3.2.3 Measurement Comparability -- 3.3.3 Transmission Loss Measurements -- 3.3.3.1 Indoor Of ce Scenario -- 3.3.3.2 Outdoor-to-Indoor Scenario -- 3.3.3.3 Outdoor Street Scenario -- 3.3.3.4 Outdoor Urban Over Rooftop Scenario -- 3.3.4 Delay Domain Measurements -- 3.3.4.1 Indoor Of ce -- 3.3.4.2 Outdoor-to-Indoor.
3.3.4.3 Outdoor Street Canyon Scenario -- 3.3.4.4 General Frequency Trend in Delay Domain -- 3.3.5 Directional Domain Measurements -- 3.3.5.1 Indoor Of ce Wideband Results at 60 GHz -- 3.3.5.2 Indoor Of ce Multifrequency Results -- 3.3.5.3 Urban Macrocell Outdoor Results at 5 GHz -- 3.4 Channel Modeling -- 3.4.1 5G Stochastic Channel Models -- 3.4.1.1 Transmission Loss Modeling -- 3.4.1.2 Multipath Directional and Delay Modeling -- 3.4.1.3 Spatial Consistency -- 3.4.2 Geometry-Based Modeling -- 3.4.2.1 Blockage -- 3.5 Summary and Future Work -- References -- 4 Mathematical Modeling of Hardware Impairments -- 4.1 RF Power Ampli ers -- 4.1.1 The Volterra Series -- 4.1.2 Common Subsets of the Volterra Series -- 4.1.2.1 Static Polynomial -- Third-Order Static Polynomial -- 4.1.2.2 A Note on Odd-Even and Odd Orders -- 4.1.2.3 Memory Polynomial -- 4.1.2.4 Generalized Memory Polynomial -- 4.1.3 Global vs. Local Basis Functions -- 4.1.4 Experimental Model Validation -- 4.1.4.1 Quantifying Modeling Performance -- 4.1.5 Mutually Orthogonal Basis Functions -- 4.1.6 Multi-Antenna Environments and Mutual Coupling -- 4.2 Oscillator Phase Noise -- 4.2.1 Phase-Noise Power Spectrum and Leeson's Equation -- 4.2.2 Phase-Noise Modeling: Free-Running Oscillator -- 4.2.3 Phase-Noise Modeling: Phase-Locked Loop -- 4.3 Data Converters -- 4.3.1 Modeling of Quantization Noise -- 4.4 Statistical Modeling -- 4.4.1 The Bussgang Theorem and the System Model -- 4.5 Stochastic Modeling of Power Ampli ers -- 4.6 Oscillator Phase Noise -- 4.7 Stochastic Modeling of Data Converters -- 4.8 Model Concatenation and Simulations -- 4.8.1 Signal-to-Interference and Noise Ratio -- 4.8.2 Simulations -- 4.8.3 Simulation Results -- References -- 5 Multicarrier Waveforms -- 5.1 Multicarrier Waveforms -- 5.1.1 The Principle of Orthogonality -- 5.1.2 OFDM-Based Waveforms.
5.1.2.1 Cyclic Pre x OFDM -- 5.1.2.2 Windowed OFDM -- 5.1.2.3 Filtered OFDM -- 5.1.2.4 Universally Filtered OFDM -- 5.1.3 Filter Bank-Based Waveforms -- 5.1.3.1 FBMC-OQAM -- 5.1.3.2 FBMC-QAM -- 5.2 Single Carrier DFTS-OFDM -- 5.3 Waveform Design Requirements for 5G NR -- 5.4 Key Performance Indicator for NR Waveform Design -- 5.5 Waveform Comparison for NR -- 5.5.1 Frequency Localization -- 5.5.2 Power Ef ciency -- 5.5.3 Time-Varying Fading Channel -- 5.5.4 Baseband Complexity -- 5.5.4.1 CP-OFDM -- 5.5.4.2 W-OFDM -- 5.5.4.3 UF-OFDM -- 5.5.4.4 FBMC-OQAM -- 5.5.5 Phase-Noise Robustness Comparison -- 5.5.5.1 Phase-Noise Effect in OFDM -- 5.5.5.2 Phase-Noise Effect in FBMC-QAM -- 5.5.5.3 Phase-Noise Effect in FBMC-OQAM -- References -- 6 NR Waveform -- 6.1 Suitability of OFDM for NR -- 6.2 Scalable OFDM for NR -- 6.2.1 Why 15 kHz as Baseline Numerology? -- 6.2.2 Why 15x2n kHz Scaling? -- 6.3 OFDM Numerology Implementation -- 6.3.1 Phase Noise -- 6.3.2 Cell Size, Service Latency, and Mobility -- 6.3.3 Multiplexing Services -- 6.3.4 Spectral Con nement -- 6.3.5 Guard Band Considerations -- 6.3.6 Implementation Aspects -- 6.4 Improving Power Ef ciency of NR Waveform -- 6.4.1 Techniques With Distortion -- 6.4.2 Distortion-less Techniques -- 6.5 Effects of Synchronization Errors -- 6.5.1 Effect of Timing Offset -- 6.5.2 Effect of Carrier Frequency Offset -- 6.5.3 Sampling Frequency Offset -- 6.6 Impairment Mitigation -- 6.6.1 A Phase-Noise Mitigation Scheme -- 6.6.2 CFO and SFO Mitigation -- References -- 7 Multiantenna Techniques -- 7.1 The Role of Multiantenna Techniques in NR -- 7.1.1 Low Frequencies -- 7.1.2 High Frequencies -- 7.2 Multiantenna Fundamentals -- 7.2.1 Beam-Forming, Precoding, and Diversity -- 7.2.2 Spatial Multiplexing -- 7.2.2.1 SU-MIMO Precoding -- 7.2.2.2 MU-MIMO Precoding -- 7.2.2.3 MIMO Receivers -- 7.2.3 Antenna Array Architectures.
7.2.3.1 Digital Arrays -- 7.2.3.2 Analog Arrays -- 7.2.3.3 Hybrid Arrays -- 7.2.3.4 A Millimeter-Wave Antenna Array System Prototype -- 7.2.4 UE Antennas -- 7.2.5 Antenna Ports and QCL -- 7.2.6 CSI Acquisition -- 7.2.6.1 Reciprocity Based -- 7.2.6.2 Feedback Based -- 7.2.7 Massive MIMO -- 7.3 Multiantenna Techniques in NR -- 7.3.1 CSI Acquisition -- 7.3.1.1 Interference Measurements -- 7.3.2 Downlink MIMO Transmission -- 7.3.3 Uplink MIMO Transmission -- 7.3.4 Beam Management -- 7.3.4.1 Beam Acquisition During Initial Access -- 7.3.4.2 Beam Management Procedures -- 7.3.4.3 Beam Measurement and Reporting -- 7.3.4.4 Beam Indication -- 7.3.4.5 Beam Recovery -- 7.3.4.6 Uplink Beam Management -- 7.4 Experimental Results -- 7.4.1 Beam-Forming Gain -- 7.4.2 Beam Tracking -- 7.4.3 System Simulations -- References -- 8 Channel Coding -- 8.1 Fundamental Limits of Forward Error Correction -- 8.1.1 The Binary AWGN Channel -- 8.1.2 Coding Schemes for the Binary-AWGN Channels -- 8.1.3 Performance Metrics -- 8.2 FEC Schemes for the Bi-AWGN Channel -- 8.2.1 Introduction -- 8.2.2 Some De nitions -- 8.2.3 LDPC Codes -- 8.2.3.1 Fundamentals of LDPC Codes -- 8.2.3.2 The LDPC-Code Solution Chosen for 5G NR -- 8.2.4 Polar Codes -- 8.2.4.1 Fundamentals of Polar Codes -- 8.2.4.2 The Polar-Code Solution Chosen for 5G NR -- Deterministic Reliability Ordering -- Parity-Check Coding -- Rate Adaptation -- 8.2.5 Other Coding Schemes for the Short-Blocklength Regime -- 8.2.5.1 Short Algebraic Linear Block Codes With Ordered-Statistics Decoding -- 8.2.5.2 Linear Block Codes With Tail-Biting Trellises -- 8.2.5.3 Nonbinary LDPC Codes -- 8.2.5.4 Performance -- 8.3 Coding Schemes for Fading Channels -- 8.3.1 The SISO Case -- 8.3.2 The MIMO Case -- References -- 9 Simulator -- 9.1 Simulator Overview -- 9.2 Functional Modules -- 9.2.1 Channel Model -- 9.2.2 Power Ampli er Model.
9.2.3 Phase-Noise Model -- 9.2.4 Synchronization -- 9.2.5 Channel Estimation and Equalization -- 9.3 Waveforms -- 9.3.1 CP-OFDM -- 9.3.2 W-OFDM -- 9.3.3 UF-OFDM -- 9.3.4 FBMC-OQAM -- 9.3.5 FBMC-QAM -- 9.4 Simulation Exercises -- 9.4.1 Spectral Regrowth -- 9.4.2 Impairment of CFO -- 9.4.3 Impairment of PN -- 9.4.4 Impairment of Fading Channel -- References -- Index -- Back Cover.
Subject Mobile communication systems.
Wireless communication systems.
Cell phone systems -- Standards.
Radiocommunications mobiles.
Transmission sans fil.
TECHNOLOGY & ENGINEERING -- Mechanical.
Wireless communication systems
Mobile communication systems
Cell phone systems -- Standards
Added Author Zaidi, Ali.
Athley, Fredrik.
Medbo, Jonas.
Gustavsson, Ulf.
Durisi, Giuseppe.
Chen, Xiaoming.
Other Form: Print version: 5G physical layer. London : Academic Press, 2018 0128145781 9780128145784 (OCoLC)1020030025
ISBN 9780128145791 (electronic bk.)
012814579X (electronic bk.)
9780128145784 (print)
0128145781
Standard No. AU@ 000064362705

 
    
Available items only