Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Ranade, Vivek V.

Title Industrial wastewater treatment, recycling and reuse / Vivek V. Ranade, Vinay M. Bhandari.

Imprint Oxford : Butterworth-Heinemann, 2014.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (577 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Print version record.
Summary Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India.
Bibliography Includes bibliographical references and index.
Language English.
Contents Front Cover -- Industrial Wastewater Treatment, Recycling, and Reuse -- Copyright -- Contents -- Preface -- Contributors -- Chapter 1: Industrial Wastewater Treatment, Recycling, and Reuse: An Overview -- 1.1. Water Usage in Industry -- 1.1.1. Overall Water Availability -- 1.1.2. Industrial Water Usage -- 1.1.3. Treatment, Recycling, and Reuse -- 1.2. Characterization of Industrial Wastewater -- 1.3. Strategy for Wastewater Management -- 1.3.1. Hierarchical Approach for Solving Pollution Problems -- 1.4. Separation Processes and Conventional Methods of Wastewater Treatment -- 1.4.1. Coagulation/Flocculation -- 1.4.1.1. Commonly Used Coagulants -- 1.4.2. Adsorption -- 1.4.3. Ion Exchange -- 1.4.4. Membrane Separation -- 1.4.5. Cavitation -- 1.4.6. Advanced Oxidation Processes -- 1.4.7. Incineration -- 1.4.8. Biological Method of Treatment -- 1.4.8.1. Aerobic Treatment -- 1.4.8.2. Anaerobic Treatment -- 1.4.8.3. Biological Treatment: Combination of Aerobic and Anaerobic Operations -- 1.4.9. Hybrid Separations -- 1.5. Industry Sectors Where Wastewater Treatment, Recycling, and Reuse Can Have a High Impact -- 1.5.1. Removal of Metals -- 1.5.2. Dye Wastewater Treatment -- 1.5.2.1. Indian Scenario -- 1.5.2.2. Global Scenario -- 1.5.2.3. Dye Wastewater Treatment: Overview and Recommendations -- 1.5.3. Food Industry -- 1.6. Industrial Wastewater Treatment Process Engineering -- 1.6.1. Newer Modifications in the Existing Methods -- 1.7. Advanced Modeling for Water Treatment -- 1.8. Cost of Wastewater Treatment and Possible Value Addition -- 1.9. Summary -- References -- Chapter 2: Advanced Physico-chemical Methods of Treatment for Industrial Wastewaters -- 2.1. Introduction -- 2.1.1. Selection of Method -- 2.1.2. Devising a Solution for Industrial Wastewater Treatment -- 2.2. Advanced Coagulation Processes -- 2.2.1. Types of Coagulant.
2.2.2. How Coagulants Work and How to Select Coagulant -- 2.2.3. Advances in Coagulation Process and Practice -- 2.2.3.1. Electro-coagulation and Cavigulation -- 2.2.4. Case Study: Dye Wastewater Treatment -- 2.3. Advanced Adsorption and Ion Exchange Processes -- 2.3.1. Adsorbent: Screening and Selection -- 2.3.2. Equilibria and Kinetics of Adsorption -- 2.3.2.1. Adsorption Isotherm -- 2.3.2.2. Adsorption Kinetics -- 2.3.3. Recent Advances in Adsorption Processes -- 2.3.4. Ion Exchange -- 2.3.5. Ion Exchange: Advances and Applications in Wastewater Treatment -- 2.3.6. Case Study: Adsorption/Ion Exchange for Acid Removal -- 2.4. Other Advanced Physico-chemical Methods of Treatment -- 2.4.1. Membrane Separations -- 2.4.1.1. Membrane Variants in Wastewater Treatment -- 2.4.1.2. Membranes in Wastewater Treatment: Future Needs -- 2.4.2. Advanced Oxidation Processes -- 2.4.2.1. Electro-oxidation -- 2.5. Cavitation -- 2.5.1. Cavitation Using Tangential Flow/Vortex Diodes -- 2.5.2. Application of Cavitation in Dye Wastewater Treatment -- 2.5.3. Application of Cavitation in Reducing Ammoniacal Nitrogen -- 2.5.4. Case Study: Hydrodynamic Cavitation Using a Vortex Diode in Real Industrial Effluent Treatment -- 2.6. Cost Considerations -- 2.7. Summary -- References -- Chapter 3: Advanced Oxidation Technologies for Wastewater Treatment: An Overview -- 3.1. Introduction -- 3.2. Cavitation -- 3.2.1. Acoustic Cavitation -- 3.2.1.1. Reactors Used for Acoustic Cavitation -- 3.2.1.2. Optimization of Operating Parameters for Acoustic Cavitation -- 3.2.1.2.1. Effect of Frequency -- 3.2.1.2.2. Effect of Irradiating Surface -- 3.2.1.2.3. Intensity of Irradiation -- 3.2.1.2.4. Effect of Physico-chemical Properties of Liquid -- 3.2.2. Hydrodynamic Cavitation -- 3.2.2.1. HC Reactor -- 3.2.2.2. Optimum Operating Conditions.
3.2.2.2.1. Effect of Operating Pressure and Cavitation Number -- 3.2.2.2.2. Effect of Geometry of a Cavitating Device -- 3.2.2.2.3. Effect of Physicochemical Properties of Liquid and Operating pH -- 3.3. Fenton Chemistry -- 3.3.1. Reactor Used for Fenton Oxidation -- 3.3.2. Optimum Operating Conditions -- 3.3.2.1. Operating pH -- 3.3.2.2. Number of Ferrous Ions -- 3.3.2.3. Concentration of H2O2 -- 3.4. Photocatalytic Oxidation -- 3.4.1. Reactor Used for Photocatalytic Oxidation -- 3.4.2. Optimum Operating Conditions -- 3.4.2.1. Amount of Catalyst -- 3.4.2.2. Reactor Designs -- 3.4.2.3. Wavelength of Irradiation -- 3.4.2.4. Radiant Flux -- 3.4.2.5. Medium pH -- 3.4.2.6. Effect of Ionic Species -- 3.5. Hybrid Methods -- 3.5.1. Cavitation Coupled with H2O2 -- 3.5.2. Cavitation Coupled with Ozone -- 3.5.3. Cavitation Coupled with Photocatalysis -- 3.5.4. Photo-Fenton (Fenton Process in the Presence of UV Light) -- 3.5.5. Cavitation Coupled with Fenton -- 3.6. Case Studies -- 3.6.1. Intensification of Degradation of Imidacloprid in Aqueous Solutions using Combination of HC with Various AOPs -- 3.6.1.1. Degradation of Imidacloprid Using HC-Based Hybrid Method -- 3.6.2. Biodegradability Enhancement of Distillery Wastewater Using HC -- 3.6.2.1. Treatment of B-DWW Using HC -- 3.7. Summary -- References -- Chapter 4: Advanced Treatment Technology and Strategy for Water and Wastewater Management -- 4.1. Introduction -- 4.1.1. Principal Bottlenecks of Present Wastewater Treatment Systems -- 4.2. Advanced Oxidation Treatment -- 4.3. Fenton Process: Advanced Oxidation Technologies -- 4.4. Electro-Fenton Advanced Oxidation Treatment -- 4.5. Fenton Catalytic Reactor Advanced Oxidation Treatment -- 4.6. Electrochemical Advanced Oxidation Treatment with BDD -- 4.7. Implementation of Advanced Oxidation Technologies.
4.7.1. Advanced Oxidation Process as an End-of Pipe Solution -- 4.7.2. Advanced Oxidation Process as Standalone Treatment -- 4.7.3. Advanced Oxidation Process as a Buffer for Biological Treatment -- 4.8. Summary and Conclusions -- References -- Chapter 5: Novel Technologies for the Elimination of Pollutants and Hazardous Substances in the Chemical and Pharmaceutica ... -- 5.1. Introduction -- 5.2. The Bayer Loprox Process (Holzer et al., 1992) -- 5.2.1. Examples of the Use of the Loprox Process (Holzer et al., 1992) -- 5.3. Bayer Tower Biology (Holzer et al., 1992) -- 5.3.1. Process Design Characteristics (Bayer, n.d.) -- 5.3.2. Optimum Design of Injectors (Bayer, n.d.) -- 5.3.3. Examples of Tower Biology (Zlokarnik, 1985) -- 5.4. Summary of Loprox and Tower Biology -- References -- Chapter 6: Reorienting Waste Remediation Towards Harnessing Bioenergy: A Paradigm Shift -- 6.1. Introduction -- 6.2. Anaerobic Fermentation -- 6.3. Biohydrogen Production from Waste Remediation -- 6.3.1. Dark-Fermentation -- 6.3.1.1. Selective Enrichment of Biocatalyst -- 6.3.1.2. Factors Influencing Biohydrogen Production -- 6.3.1.3. Bioreactor Configuration and Operational Mode -- 6.3.2. Renewable Wastewater as Feedstock -- 6.3.3. Thermochemical Process -- 6.3.4. Process Limitations -- 6.4. MFCs for Harvesting Bioelectricity from Waste Remediation -- 6.4.1. Applications of MFC -- 6.4.1.1. Bioelectricity Production -- 6.4.1.1.1. Factors Influencing Bioelectrogenic Activity of MFC -- 6.4.2. Bioelectrochemical Treatment -- 6.4.3. Electrically Driven Biohydrogenesis -- 6.4.4. Microbial Electrosynthesizer -- 6.5. Bioplastics -- 6.5.1. Bioplastics Synthesis from Wastewater -- 6.5.2. Bioplastics Production from Wastewater and CO2 -- 6.6. Microalgae Cultivation Towards Biodiesel Production -- 6.6.1. Mode of Nutrition -- 6.6.2. Carbon Sequestration for Microalgae Growth.
6.6.3. Preparation of Algal Fuel -- 6.7. Summary -- References -- Further Reading -- Chapter 7: Urban Wastewater Treatment for Recycling and Reuse in Industrial Applications: Indian Scenario -- 7.1. Introduction -- 7.2. Urban Water Sector: Indian Scenario -- 7.2.1. Water Requirements of the Urban Population -- 7.2.2. Urban Water Supply System -- 7.2.3. Urban Sewerage System -- 7.2.4. Wastewater Treatment: Recycling and Reuse Option -- 7.2.5. Water Balance for India -- 7.2.5.1. Atmospheric Water Balance -- 7.2.5.2. Hydrologic Water Balance -- 7.2.6. Water Balance: Convergence to Recycling and Reuse -- 7.2.7. Urban Sewage Quality and Quantity -- 7.2.7.1. Sewage Generation and Existing Treatment Capacity -- 7.2.7.2. Water Quality Requirement for Different Uses -- 7.2.8. Urban Water Market -- 7.3. Urban Sewage Treatment Options -- 7.3.1. Urban Sewage: Primary and Secondary Treatment Options -- 7.3.1.1. Primary Treatment -- 7.3.1.2. Secondary Treatment -- 7.3.2. Urban Wastewater: Tertiary Treatment Options -- 7.3.3. Water Recycling and Reuse: Strategy -- 7.4. Industrial Water Production and Reuse/Urban-Industry Joint Venture -- 7.4.1. Sewage Reclamation Plant, the Rashtriya Chemicals and Fertilizers Plant, Chembur, Mumbai, India -- 7.4.1.1. Salient Features -- 7.4.2. Tertiary Treated Municipal Sewage Reuse, Madras Refineries Ltd. (MRL) and Madras Fertilizers Ltd., Chennai, India -- 7.4.2.1. Salient Features -- 7.4.3. RO Plant for Wastewater Reuse, Vadodara, Gujarat, India -- 7.5. Urban-Industrial Water Sustainability: 2030 -- 7.5.1. Water Management, Policies, and Legislation Related to Water Use in Agriculture -- 7.5.2. Water Management -- 7.5.3. Finances -- 7.5.4. Policies and Legislation -- 7.6. Summary and Path Forward -- References -- Chapter 8: Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials.
Subject Sewage -- Purification.
Water reuse.
Eaux usées -- Épuration.
TECHNOLOGY & ENGINEERING -- Chemical & Biochemical.
Sewage -- Purification
Water reuse
Added Author Bhandari, Vinay M.
Other Form: Print version: Ranade, Vivek V. Industrial Wastewater Treatment, Recycling and Reuse. Burlington : Elsevier Science, ©2014 9780080999685
ISBN 9780444634030 (electronic bk.)
0444634037 (electronic bk.)
1306992885
9781306992886
0081013256
9780081013250
0080999689
9781306992886
1306992885
9780080999685
Standard No. 9781306992886
AU@ 000054965060
CHNEW 000710795
CHNEW 001012351
DEBBG BV042299993
DEBSZ 414277163
DEBSZ 431729816

 
    
Available items only