Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Carter, Bruce, 1954- author.

Title Op amps for everyone / Bruce Carter, Ron Mancini.

Publication Info. Oxford, United Kingdom ; Cambridge, MA : Newnes, [2018]
©2018

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition Fifth edition.
Description 1 online resource (1 volume) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Online resource; title from title page (Safari, viewed July 28, 2017).
Bibliography Includes bibliographical references and index.
Summary Op Amps for Everyone, Fifth Edition, will help you design circuits that are reliable, have low power consumption, and can be implemented in as small a size as possible at the lowest possible cost. It bridges the gap between the theoretical and practical by giving pragmatic solutions using components that are available in the real world from distributors. The book does not just give a design with a transfer function; instead, it provides design tools based on transfer function, getting you to a working circuit so you can make the right decision on which op amp is best for the job at hand. With this book you will learn: single op amp designs that get the most out of every amplifier; which specifications are of most importance to your design, enabling you to narrow down the list of amplifiers to those few that are most suitable; strategies for making simple tweaks to the design-changes that are often apparent once a prototype has been constructed; how to design for hostile environments-extreme temperatures, high levels of shock, vibration, and radiation-by knowing which circuit parameters are likely to degrade and how to counteract that degradation.
Contents Front Cover -- Op Amps for Everyone -- Op Amps for Everyone -- Copyright -- Dedication -- Contents -- List of Figures -- List of Tables -- Foreword -- The Changing World -- 1 -- The Op Amp's Place in the World -- 1.1 The Problem -- 1.2 The Solution -- 1.3 The Birth of the Op Amp -- 1.3.1 The Vacuum Tube Era -- 1.3.2 The Transistor Era -- 1.3.3 The IC Era -- Reference -- 2 -- Development of the Ideal Op Amp Equations -- 2.1 Introduction -- 2.2 Ideal Op Amp Assumptions -- 2.3 The Noninverting Op Amp -- 2.4 The Inverting Op Amp -- 2.5 The Adder -- 2.6 The Differential Amplifier -- 2.7 Complex Feedback Networks -- 2.8 Impedance Matching Amplifiers -- 2.9 Capacitors -- 2.10 Why an Ideal Op Amp Would Destroy the Known Universe -- 2.11 Summary -- 3 -- Single-Supply Op Amp Design Techniques -- 3.1 Single Supply Versus Dual Supply -- 4 -- DC-Coupled Single-Supply Op Amp Design Techniques -- 4.1 An Introduction to DC-Coupled, Single-Supply Circuits -- 4.2 Simple Application to Get You Started -- 4.3 Circuit Analysis -- 4.4 Simultaneous Equations -- 4.4.1 Case 1: VOUT=+mVIN+b -- 4.4.2 Case 2: VOUT=+mVIN−b -- 4.4.3 Case 3: VOUT=−mVIN+b -- 4.4.4 Case 4: VOUT=−mVIN−b -- 4.5 Summary -- 5 -- On Beyond Case 4 -- 5.1 A Continuum of Applications -- 5.2 Noninverting Attenuator With Zero Offset -- 5.3 Noninverting Attenuation With Positive Offset -- 5.4 Noninverting Attenuation With Negative Offset -- 5.5 Inverting Attenuation With Zero Offset -- 5.6 Inverting Attenuation With Positive Offset -- 5.7 Inverting Attenuation With Negative Offset -- 5.8 Noninverting Buffer -- 5.9 Signal Chain Design -- 6 -- Feedback and Stability Theory -- 6.1 Introduction to Feedback Theory -- 6.2 Block Diagram Math and Manipulations -- 6.3 Feedback Equation and Stability -- 6.4 Bode Analysis of Feedback Circuits -- 6.5 Bode Analysis Applied to Op Amps.
6.6 Loop Gain Plots Are the Key to Understanding Stability -- 6.7 The Second-Order Equation and Ringing/Overshoot Predictions -- References -- 7 -- Development of the Nonideal Op Amp Equations -- 7.1 Introduction -- 7.2 Review of the Canonical Equations -- 7.3 Noninverting Op Amps -- 7.4 Inverting Op Amps -- 7.5 Differential Op Amps -- 7.6 Are You Smarter Than an Op Amp? -- 8 -- Voltage-Feedback Op Amp Compensation -- 8.1 Introduction -- 8.2 Internal Compensation -- 8.3 External Compensation, Stability, and Performance -- 8.4 Dominant-Pole Compensation -- 8.5 Gain Compensation -- 8.6 Lead Compensation -- 8.7 Compensated Attenuator Applied to Op Amp -- 8.8 Lead-Lag Compensation -- 8.9 Comparison of Compensation Schemes -- 8.10 Conclusions -- 9 -- Current-Feedback Op Amps -- 9.1 Introduction -- 9.2 Current-Feedback Amplifier Model -- 9.3 Development of the Stability Equation -- 9.4 The Noninverting Current-Feedback Amplifier -- 9.5 The Inverting Current-Feedback Amplifier -- 9.6 Stability Analysis -- 9.7 Selection of the Feedback Resistor -- 9.8 Stability and Input Capacitance -- 9.9 Stability and Feedback Capacitance -- 9.10 Compensation of CF and CG -- 9.11 Summary -- 10 -- Voltage- and Current-Feedback Op Amp Comparison -- 10.1 Introduction -- 10.2 Precision -- 10.3 Bandwidth -- 10.4 Stability -- 10.5 Impedance -- 10.6 Equation Comparison -- 11 -- Fully Differential Op Amps -- 11.1 Introduction -- 11.2 What Does "Fully Differential" Mean? -- 11.3 How is the Second Output Used? -- 11.4 Differential Gain Stages -- 11.5 Single-Ended to Differential Conversion -- 11.6 A New Function -- 11.7 Conceptualizing the Vocm Input -- 11.8 Instrumentation -- 11.9 Filter Circuits -- 11.9.1 Single-Pole Filters -- 11.9.2 Double-Pole Filters -- 11.9.3 Multiple Feedback Filters -- 11.9.4 Biquad Filter -- 12 -- Different Types of Op Amps -- 12.1 Introduction.
12.2 Uncompensated/Undercompensated Voltage-Feedback Op Amps -- 12.3 Instrumentation Amplifier -- 12.4 Difference Amplifier -- 12.5 Buffer Amplifiers -- 13 -- Troubleshooting-What to Do When Things Go Wrong -- 13.1 Introduction -- 13.2 Simple Things First-Check the Power! -- 13.3 Do Not Forget That Enable Pin -- 13.4 Check the DC Operating Point -- 13.5 The Gain Is Wrong -- 13.6 The Output Is Noisy -- 13.6.1 Conducted Emissions and Radiated Emissions -- 13.6.2 Radiated Susceptibility -- 13.6.3 Conducted Susceptibility -- 13.7 The Output Has an Offset -- 13.8 Conclusion -- 14 -- Interfacing a Transducer to an Analog to Digital Converter -- 14.1 Introduction -- 14.2 System Information -- 14.3 Power Supply Information -- 14.4 Input Signal Characteristics -- 14.5 Analog to Digital Converter Characteristics -- 14.6 Interface Characteristics -- 14.7 Architectural Decisions -- 14.8 Conclusions -- 15 -- Interfacing D/A Converters to Loads -- 15.1 Introduction -- 15.2 Load Characteristics -- 15.2.1 DC Loads -- 15.2.2 AC Loads -- 15.3 Understanding the D/A Converter and Its Specifications -- 15.3.1 Types of D/A Converters-Understanding the Trade-offs -- 15.3.2 The Resistor Ladder D/A Converter -- 15.3.3 The Weighted Resistor D/A Converter -- 15.3.4 The R/2R D/A Converter -- 15.3.5 The Sigma Delta D/A Converter -- 15.4 D/A Converter Error Budget -- 15.4.1 Accuracy Versus Resolution -- 15.4.2 DC Application Error Budget -- 15.4.3 AC Application Error Budget -- 15.4.3.1 Total Harmonic Distortion -- 15.4.3.2 Dynamic Range -- 15.4.4 RF Application Error Budget -- 15.5 D/A Converter Errors and Parameters -- 15.5.1 DC Errors and Parameters -- 15.5.1.1 Offset Error -- 15.5.1.2 Gain Error -- 15.5.1.3 Differential Nonlinearity Error -- 15.5.1.4 Integral Nonlinearity Error -- 15.5.1.5 Power Supply Rejection Ratio -- 15.5.2 AC Application Errors and Parameters.
15.5.2.1 THD+N -- 15.5.2.2 Signal-to-Noise and Distortion -- 15.5.2.3 Effective Number of Bits -- 15.5.2.4 Spurious-Free Dynamic Range -- 15.5.2.5 Intermodulation Distortion -- 15.5.2.6 Settling Time -- 15.6 Compensating for DAC Capacitance -- 15.7 Increasing Op Amp Buffer Amplifier Current and Voltage -- 15.7.1 Current Boosters -- 15.7.2 Voltage Boosters -- 15.7.3 Power Boosters -- 15.7.4 Single-Supply Operation and DC Offsets -- 16 -- Active Filter Design Techniques -- 16.1 Introduction -- 16.2 Fundamentals of Low-Pass Filters -- 16.2.1 Butterworth Low-Pass Filters -- 16.2.2 Tschebyscheff Low-Pass Filters -- 16.2.3 Bessel Low-Pass Filters -- 16.2.4 Quality Factor Q -- 16.2.5 Summary -- 16.3 Low-Pass Filter Design -- 16.3.1 First-Order Low-Pass Filter -- 16.3.2 Second-Order Low-Pass Filter -- 16.3.2.1 Sallen-Key Topology -- 16.3.2.2 Multiple Feedback Low Pass Filter Topology -- 16.3.3 Higher-Order Low-Pass Filters -- 16.3.3.1 First Filter -- 16.3.3.2 Second Filter -- 16.3.3.3 Third Filter -- 16.4 High-Pass Filter Design -- 16.4.1 First-Order High-Pass Filter -- 16.4.2 Second-Order High-Pass Filter -- 16.4.2.1 Sallen-Key Topology -- 16.4.2.2 Multiple Feedback High Pass Filter Topology -- 16.4.3 Higher-Order High-Pass Filter -- 16.4.3.1 First Filter -- 16.4.3.2 Second Filter -- 16.5 Band-Pass Filter Design -- 16.5.1 Second-Order Band-Pass Filter -- 16.5.1.1 Sallen-Key Topology -- 16.5.1.2 Multiple Feedback Band Pass Filter Topology -- 16.5.2 Fourth-Order Band-Pass Filter (Staggered Tuning) -- 16.6 Band-Rejection Filter Design -- 16.6.1 Active Twin-T Filter -- 16.6.2 Active Wien-Robinson Filter -- 16.7 All-Pass Filter Design -- 16.7.1 First-Order All-Pass Filter -- 16.7.2 Second-Order All-Pass Filter -- 16.7.3 Higher-Order All-Pass Filter -- 16.8 Practical Design Hints -- 16.8.1 Filter Circuit Biasing -- 16.8.2 Capacitor Selection.
16.8.3 Component Values -- 16.8.4 Op Amp Selection -- 16.9 Filter Coefficient Tables -- Further Reading -- 17 -- Fast, Simple Filter Design -- 17.1 Introduction -- 17.2 Fast, Practical Filter Design -- 17.3 Designing the Filter -- 17.3.1 Low-Pass Filter (Fig. 17.6) -- 17.3.2 High-Pass Filter (Fig. 17.7) -- 17.3.3 Narrow (Single-Frequency) Band-Pass Filter (Fig. 17.8) -- 17.3.4 Wide Band-Pass Filter (Fig. 17.9) -- 17.3.5 Notch (Single-Frequency Rejection) Filter (Fig. 17.10) -- 17.4 Getting the Most Out of a Single Op Amp -- 17.4.1 Three-Pole Low-Pass Filters -- 17.4.2 Three-Pole High-Pass Filters -- 17.4.3 Stagger-Tuned and Multiple-Peak Band-Pass Filters -- 17.4.4 Single-Amplifier Notch and Multiple Notch Filters -- 17.4.5 Combination Band-Pass and Notch Filters -- 17.5 Design Aids -- 17.5.1 Low-Pass, High-Pass, and Band-Pass Filter Design Aids -- 17.5.2 Notch Filter Design Aids -- 17.5.3 Twin-T Design Aids -- 17.6 Summary -- 18 -- High-Speed Filters -- 18.1 Introduction -- 18.2 High-Speed Low-Pass Filters -- 18.3 High-Speed High-Pass Filters -- 18.4 High-Speed Band-Pass Filters -- 18.5 High-Speed Notch Filters -- 18.6 10kHz Notch Filter Results -- 18.7 Conclusions -- 19 -- Using Op Amps for RF Design -- 19.1 Introduction -- 19.2 Voltage Feedback or Current Feedback? -- 19.3 RF Amplifier Topology -- 19.4 Op Amp Parameters for RF Designers -- 19.4.1 Stage Gain -- 19.4.2 Phase Linearity -- 19.4.3 Frequency Response Peaking -- 19.4.4 −1dB Compression Point -- 19.4.5 Noise Figure -- 19.5 Wireless Systems -- 19.5.1 Broadband Amplifiers -- 19.5.2 IF Amplifiers -- 19.6 High-Speed Analog Input Drive Circuits -- 19.7 Conclusions -- 20 -- Designing Low-Voltage Op Amp Circuits -- 20.1 Introduction -- 20.2 Critical Specifications -- 20.2.1 Output Voltage Swing -- 20.2.2 Dynamic Range -- 20.2.3 Input Common-Mode Range -- 20.2.4 Signal-to-Noise Ratio -- 20.3 Summary.
21 -- Extreme Applications.
Subject Operational amplifiers.
Amplificateurs opérationnels.
TECHNOLOGY & ENGINEERING -- Mechanical.
Operational amplifiers
Amplificadors operacionals.
Genre/Form Electronic book.
Added Author Mancini, Ron, author.
Added Title Operational amplifiers for everyone
Other Form: Print version: Carter, Bruce. Op amps for everyone. Fifth edition. Oxford, [England] ; Cambridge, [Massachusetts] : Newnes, ©2018 xxvi, 458 pages 9780128116487
ISBN 9780128116470 (electronic bk.)
0128116471 (electronic bk.)
9780128116487 (electronic bk.)
012811648X (electronic bk.)
Standard No. AU@ 000061154368
CHNEW 001014446
GBVCP 1004857004

 
    
Available items only