Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Cundiff, Steven.

Title Semiconductor Quantum Science and Technology [electronic resource].

Imprint San Diego : Elsevier Science & Technology, 2020.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (484 p.).
Series Issn Ser.
Issn Ser.
Note Description based upon print version of record.
Contents Intro -- Semiconductor Quantum Science and Technology -- Copyright -- Contents -- Contributors -- Chapter One: Toward scalable III-nitride quantum dot structures for quantum photonics -- 1. Introduction -- 2. Site-controlled quantum dot heterostructures -- 2.1. Brief review of site-controlled InAs quantum dots -- 2.2. Site-controlled III-nitride quantum dots -- 2.2.1. Strain induced III-nitride quantum dots -- 2.2.2. Fabrication of strain induced quantum dots -- 2.2.3. Effective quantum dot dimension -- 2.2.4. Charge-tunable III-nitride quantum dots
2.2.5. Quantum dot emission wavelength range -- 2.3. Challenges of III-nitride quantum dots -- 2.3.1. Exciton energy fluctuation and dephasing -- 2.3.2. Radiative efficiency -- 2.3.3. Fine control of exciton wavelength -- 3. Tailoring exciton-photon interactions -- 4. Conclusion -- References -- Chapter Two: Microcavity exciton polaritons -- 1. Introduction -- 2. Exciton polaritons in semiconductor microcavity -- 2.1. Strong coupling and exciton polaritons -- 2.1.1. Exciton -- 2.1.2. Semiconductor microcavity -- 2.1.3. Strong coupling and exciton polaritons
2.2. Phase transitions of exciton polaritons -- 2.2.1. Polariton condensate -- 2.2.1.1. Energy relaxation bottleneck -- 2.2.1.2. Exciton saturation and transition to photon lasing -- 2.2.1.3. Thermodynamics of polariton condensate -- 2.2.1.4. Coherence property -- 2.2.2. Polariton superfluidity -- 2.2.3. Berezinskii-Kosterlitz-Thouless phase -- 2.2.4. Bardeen-Cooper-Schrieffer phase -- 2.3. Polariton devices -- 2.3.1. Polariton lasers -- 2.3.2. Polariton switches -- 2.3.3. Quantum states and quantum simulators -- 3. Control of polariton modes -- 3.1. Control of photonic modes
3.1.1. Planar DBR-DBR cavity -- 3.1.2. Deposition -- 3.1.3. Etch and overgrowth -- 3.1.4. Etching -- 3.1.5. Concave mirrors -- 3.1.6. Subwavelength grating mirror -- 3.1.7. Photonic crystal -- 3.2. Control of excitons -- 3.2.1. Optical pumping -- 3.2.2. Strain-induced piezo-electric field -- 3.2.3. Electrical field -- 3.2.4. Magnetic field -- 4. Exciton polaritons in new materials -- 4.1. Wide band gap inorganic semiconductors -- 4.1.1. GaN polariton -- 4.1.2. ZnO -- 4.2. Organic semiconductors -- 4.3. Perovskites -- 4.4. Transition metal dichalcogenide (TMDC) monolayers
4.4.1. Excitons in monolayer TMDCs -- 4.4.1.1. Binding energy -- 4.4.1.2. Oscillator strength -- 4.4.1.3. Radiative linewidth and inhomogeneous broadening. -- 4.4.2. Strong coupling between TMDC excitons and cavity photons -- 4.4.2.1. Dielectric DBR cavity -- 4.4.2.2. Plasmonic cavity -- 4.4.2.3. Dielectric photonic crystal -- 4.4.3. Valleytronics in TMDC polaritons -- 4.4.4. Perspective -- 5. Summary -- References -- Further reading -- Chapter Three: Ultrastrong light-matter coupling in semiconductors -- 1. Introduction -- 1.1. What is the ultrastrong coupling regime?
Note 1.2. Why ultrastrong light-matter coupling?
Subject Quantum electronics.
Électronique quantique.
Quantum electronics
Added Author Kira, Mack.
Other Form: Print version: Cundiff, Steven Semiconductor Quantum Science and Technology San Diego : Elsevier Science & Technology,c2020 9780128237731
ISBN 9780128237748
0128237740

 
    
Available items only