Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Duan, Jinqiao, author.

Title Effective dynamics of stochastic partial differential equations / Jinqiao Duan, Wei Wang.

Publication Info. Amsterdam : Elsevier, 2014.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file
Series Elsevier insights
Note Previously issued in print: 2014.
Summary Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty. Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Solutions or hints to all Exercises.
Note CIP data; resource not viewed.
Contents Half Title; Title Page; Copyright; Dedication; Contents; Preface; 1 Introduction; 1.1 Motivation; 1.2 Examples of Stochastic Partial Differential Equations; 1.3 Outlines for This Book; 1.3.1 Chapter 2: Deterministic Partial Differential Equations; 1.3.2 Chapter 3: Stochastic Calculus in Hilbert Space; 1.3.3 Chapter 4: Stochastic Partial Differential Equations; 1.3.4 Chapter 5: Stochastic Averaging Principles; 1.3.5 Chapter 6: Slow Manifold Reduction; 1.3.6 Chapter 7: Stochastic Homogenization; 2 Deterministic Partial Differential Equations; 2.1 Fourier Series in Hilbert Space.
2.2 Solving Linear Partial Differential Equations2.3 Integral Equalities; 2.4 Differential and Integral Inequalities; 2.5 Sobolev Inequalities; 2.6 Some Nonlinear Partial Differential Equations; 2.6.1 A Class of Parabolic PDEs; 2.6.1.1 Outline of the Proof of Theorem 2.4; 2.6.2 A Class of Hyperbolic PDEs; 2.6.2.1 Outline of the Proof of Theorem 2.5; 2.7 Problems; 3 Stochastic Calculus in Hilbert Space; 3.1 Brownian Motion and White Noise in Euclidean Space; 3.1.1 White Noise in Euclidean Space; 3.2 Deterministic Calculus in Hilbert Space; 3.3 Random Variables in Hilbert Space.
3.4 Gaussian Random Variables in Hilbert Space3.5 Brownian Motion and White Noise in Hilbert Space; 3.5.1 White Noise in Hilbert Space; 3.6 Stochastic Calculus in Hilbert Space; 3.7 Itô's Formula in Hilbert Space; 3.8 Problems; 4 Stochastic Partial Differential Equations; 4.1 Basic Setup; 4.2 Strong and Weak Solutions; 4.3 Mild Solutions; 4.3.1 Mild Solutions of Nonautonomous spdes; 4.3.2 Mild Solutions of Autonomous spdes; 4.3.2.1 Formulation; 4.3.2.2 Well-Posedness Under Global Lipschitz Condition; 4.3.2.3 Well-Posedness Under Local Lipschitz Condition; 4.3.2.4 An Example.
4.4 Martingale Solutions4.5 Conversion Between Itô and Stratonovich SPDEs; 4.5.1 Case of Scalar Multiplicative Noise; 4.5.2 Case of General Multiplicative Noise; 4.5.3 Examples; 4.6 Linear Stochastic Partial Differential Equations; 4.6.1 Wave Equation with Additive Noise; 4.6.2 Heat Equation with Multiplicative Noise; 4.7 Effects of Noise on Solution Paths; 4.7.1 Stochastic Burgers' Equation; 4.7.2 Likelihood for Remaining Bounded; 4.8 Large Deviations for SPDEs; 4.9 Infinite Dimensional Stochastic Dynamics; 4.9.1 Basic Concepts; 4.9.2 More Dynamical Systems Concepts.
4.10 Random Dynamical Systems Defined by SPDEs4.10.1 Canonical Probability Space for SPDEs; 4.10.2 Perfection of Cocycles; 4.10.3 Examples; 4.11 Problems; 5 Stochastic Averaging Principles; 5.1 Classical Results on Averaging; 5.1.1 Averaging in Finite Dimension; 5.1.2 Averaging in Infinite Dimension; 5.2 An Averaging Principle for Slow-Fast SPDEs; 5.3 Proof of the Averaging Principle Theorem 5.20; 5.3.1 Some a priori Estimates; 5.3.2 Averaging as an Approximation; 5.4 A Normal Deviation Principle for Slow-Fast SPDEs; 5.5 Proof of the Normal Deviation Principle Theorem 5.34.
Subject Stochastic partial differential equations.
Équations aux dérivées partielles stochastiques.
MATHEMATICS -- Applied.
MATHEMATICS -- Probability & Statistics -- General.
Stochastic partial differential equations
Added Author Wang, Wei, author.
Other Form: Print version: 9780128008829
ISBN 9780128012697 (electronic bk.)
0128012692 (electronic bk.)
1306737419 (ebk)
9781306737418 (ebk)
0128008822
9780128008829
9780128008829
Standard No. AU@ 000052839824
AU@ 000052901645
AU@ 000062546998
CHBIS 010295233
CHNEW 000699775
CHNEW 000699776
CHNEW 000887178
CHNEW 001000998
CHNEW 001026518
CHVBK 327782218
DEBBG BV042300119
DEBBG BV042989747
DEBSZ 414272919
DEBSZ 43165400X
NLGGC 373792956

 
    
Available items only