Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book

Title Fundamentals of magnetic thermonuclear reactor design / edited by Vasilij Glukhikh, Oleg Filatov, Boris Kolbasov.

Publication Info. Duxford, United Kingdom : Woodhead Publishing, an imprint of Elsevier, 2018.
©2018

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Woodhead Publishing series in energy
Woodhead Publishing in energy.
Note Includes index.
Online resource; title from PDF title page (ScienceDirect, viewed May 30, 2018).
Summary 'Fundamentals of Magnetic Thermonuclear Reactor Design' is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled thermonuclear fusion (CTF) facilities with magnetic plasma confinement - from the first semi-commercial tokamak T-3, to the multi-billion international experimental thermonuclear reactor ITER, now in construction in France.
Contents Cover -- Title Page -- Copyright Page -- Book Summary -- Contents -- List of Contributors -- Preface -- Acknowledgements -- Disclaimer -- Abbreviations -- Designations -- Chapter 1 -- Engineering and Physical Principles of the Magnetic Fusion Reactor Operation -- 1.1 -- Introduction -- 1.2 -- Physical Basis of Fusion Power Engineering -- 1.3 -- Basic Correlations -- References -- Chapter 2 -- Facilities With Magnetic Plasma Confinement -- 2.1 -- Introduction -- 2.2 -- Overview -- 2.2.1 -- Tokamaks -- 2.2.2 -- Stellarators -- 2.2.3 -- Magnetic Mirrors -- 2.2.4 -- Hybrid Systems -- 2.2.5 -- Pinches -- 2.2.6 -- Spheromaks -- 2.3 -- Structure and Typical Parameters of Tokamak Reactors -- 2.4 -- Physical and Engineering Limitations for Parameter Selection -- 2.5 -- Engineering Requirements to Main Functional Systems -- 2.5.1 -- Magnet System -- 2.5.2 -- In-Chamber Conditions: Breakdown -- 2.5.3 -- Force Loads on Tokamak Components -- 2.5.4 -- Fuel Cycle: Demand for Tritium -- 2.5.5 -- Radiation Shielding -- 2.6 -- Stellarators -- 2.6.1 -- Functional Layout and Key Characteristics -- 2.6.2 -- Research Facilities -- 2.6.3 -- Stellarator Fusion Reactor -- References -- Chapter 3 -- ITER -- International Thermonuclear Experimental Reactor -- 3.1 -- Introduction -- 3.2 -- ITER Reactor Configuration and Main Characteristics -- 3.3 -- Magnet System -- 3.3.1 -- Toroidal Field Coils -- 3.3.2 -- Poloidal Field Coils -- 3.3.3 -- Central Solenoid and Correction Coils -- 3.4 -- Vacuum Vessel -- 3.5 -- In-vessel Components -- 3.5.1 -- First-Wall Panels -- 3.5.2 -- Divertor -- 3.6 -- Thermal Shields -- 3.7 -- Cryostat -- 3.8 -- Reactor Assembly -- Appendix A.3.1 Quality Assurance Programme for Reactor Design -- References -- Chapter 4 -- Simulation of Electromagnetic Fields -- 4.1 -- Introduction -- 4.2 -- Stationary and Quasi-stationary Fields -- 4.3 -- Stationary Field Analysis and Synthesis.
4.3.1 -- Stationary Field Analysis -- 4.3.2 -- Stationary Field Synthesis -- 4.3.3 -- Ripple of the Tokamak Toroidal Field -- 4.4 -- Analysis of Electromagnetic Transients -- 4.4.1 -- Calculation and Methodological Basics -- 4.4.2 -- Sources of Transient Fields -- 4.4.3 -- Global Computational Models Based on Conducting Shells -- 4.4.4 -- 3D Computational Models -- 4.4.5 -- Computation of Potentials: Global and Local Model Integration -- Appendix A.4.1 Example of How to Synthesise a Ferromagnetic Insert -- Appendix A.4.2 Examples of FE Meshing of Conducting Shell Models for ITER Components -- Appendix A.4.3 Examples of 3D FE Meshes for Massive Conducting Structures of ITER -- References -- Chapter 5 -- Superconducting Magnet Systems -- 5.1 -- Introduction -- 5.2 -- Superconducting Magnet Systems of Electrophysical Facilities -- 5.2.1 -- Summary Characteristics of Superconducting Magnets -- 5.2.2 -- ITER Magnets -- 5.3 -- Physical and Mechanical Properties of Superconductors -- 5.3.1 -- Flux Pinning -- 5.3.2 -- Critical Characteristics -- 5.3.3 -- Intrinsic Stabilisation -- 5.4 -- Winding Superconductors -- 5.4.1 -- Normal Phase Effect -- 5.4.2 -- Forced-Flow Cooled Superconducting Cables -- 5.4.3 -- Basic Superconducting Strands -- 5.4.4 -- Superconducting Coil Cable Manufacturing Processes -- 5.5 -- Modelling of the ITER Magnet System -- 5.5.1 -- International Model Coil Program -- 5.5.2 -- Toroidal Field Model Coil -- 5.5.3 -- Model Insert Coils -- 5.5.4 -- Main Simulation and Testing Results -- Appendix A.5.1 Thermal-Hydraulic Simulations of ITER Superconducting Magnets at Normal and Off-Normal Operation -- A.5.1.1 Venecia Basic Models and Modelling Technique -- A.5.1.2 Validation of Vincenta/Venecia Models for Thermal-Hydraulic Analysis of SC Magnets and Their Cryogenic Circuits -- A.5.1.2.1 Central Solenoid Model Coil -- A.5.1.2.2 Simulations Versus Experiments.
A.5.1.3 Thermal-Hydraulic Models of ITER Magnets -- A.5.1.3.1 Toroidal Field Magnet Model -- A.5.1.3.2 Central Solenoid Model -- A.5.1.3.3 Model of PF Magnet System -- A.5.1.4 Mitigation of Pulsed Heat Loads -- References -- Chapter 6 -- Vacuum and Tritium System -- 6.1 -- Introduction -- 6.2 -- Physical Processes in the Vacuum Chamber -- 6.3 -- Plasma Impact on the First Wall -- 6.4 -- Plasma Impurity Control -- 6.4.1 -- Sources of Impurities -- 6.4.2 -- Impurity Control Methods: The Magnetic Divertor -- 6.5 -- Design Evaluation of Vacuum Parameters -- 6.6 -- Vacuum Equipment and Processes -- 6.6.1 -- Vacuum System Key Components -- 6.6.2 -- Vacuum Boundary of Reactor -- 6.6.2.1 -- Dual Functionality FW Design Concept -- 6.6.2.2 -- Separate Functionality FW Design Concept -- 6.6.3 -- Vacuum Pumping Duct Design -- 6.6.4 -- Wall Cleaning and Conditioning -- 6.6.5 -- Vacuum Pumping Equipment -- 6.7 -- Mathematical Simulation of High-Vacuum Systems -- References -- Chapter 7 -- First Wall Components -- 7.1 -- Introduction -- 7.2 -- First-Wall Design Principles -- 7.2.1 -- Design Algorithm -- 7.2.2 -- Initial Stage Design -- 7.2.3 -- Estimation of the Engineering and Physical Characteristics of the First-Wall Components -- 7.2.3.1 -- Heat Load Estimation -- 7.2.3.2 -- Determination of Coolant's Parameters -- 7.2.3.3 -- Material Selection -- 7.2.3.4 -- Estimation of the First-Wall Thickness and Temperature Field -- 7.2.3.5 -- Armour Erosion Lifetime -- 7.2.3.6 -- Strength and Fatigue Lifetime -- 7.3 -- ITER First Wall -- 7.3.1 -- First-Wall Components -- 7.3.2 -- Component Modelling: Technological and Testing Facilities -- 7.3.3 -- Prevention of Destructive Events -- 7.4 -- Next-Generation Reactor First Wall -- 7.4.1 -- Challenges -- 7.4.2 -- Possible Engineering and Physical Solutions -- 7.5 -- Alternative Uses of First-Wall Technologies -- References -- Chapter 8 -- Plasma Control System.
8.1 -- Introduction -- 8.2 -- Scope of the Control System Design Problem -- 8.3 -- Basic Design Methodology -- 8.4 -- Mathematical Modelling of Electromagnetic Processes -- 8.4.1 -- Derivation of Linear Models -- 8.4.2 -- Non-linear Modelling -- 8.5 -- Analytical Synthesis and Control System Optimisation -- 8.5.1 -- Basic Concept -- 8.5.2 -- Problem Generalisation -- 8.6 -- Plasma Start-Up Phase -- 8.6.1 -- Dynamics of Tokamak Electromagnetic Processes -- 8.6.2 -- Plasma Transport Model at Start-Up Phase -- 8.7 -- Correction of Error Fields -- 8.7.1 -- Effect of Error Fields on Plasma Processes -- 8.7.2 -- Field Perturbation Harmonic Analysis -- 8.7.3 -- ITER Correction Coils -- 8.8 -- Plasma Column Position and Shape Reconstruction Based on Magnetic Measurements -- 8.8.1 -- Basic Principles -- 8.8.2 -- Reconstruction Methods -- References -- Chapter 9 -- Plasma Heating Systems -- 9.1 -- Introduction -- 9.2 -- Ohmic Heating -- 9.3 -- Additional Heating Methods -- 9.3.1 -- Neutral Beam (NB) Injection -- 9.3.2 -- Electron Cyclotron Resonance Heating -- 9.3.3 -- Ion Cyclotron Resonance Heating -- 9.3.4 -- Lower Hybrid Resonance Heating -- References -- Chapter 10 -- Blanket -- 10.1 -- Introduction -- 10.2 -- Key Functions and Resulting Performance Requirements -- 10.3 -- Blanket Design Algorithm -- 10.4 -- Blanket Designs for Demonstration and Commercial Reactors -- 10.4.1 -- Gen-1 Blankets -- 10.4.2 -- Prospective Blanket Concepts -- 10.5 -- ITER Test Blanket Modules -- 10.5.1 -- Purpose and Objectives of the Test Modules -- 10.5.2 -- Characteristics of Test Blanket Modules -- 10.6 -- Blanket Design Problems -- References -- Chapter 11 -- Power Supply Systems -- 11.1 -- Introduction -- 11.2 -- Power Supply for Toroidal Field Coils -- 11.2.1 -- Resistive Coils -- 11.2.2 -- Superconducting Coils -- 11.2.3 -- ITER Toroidal Field Coil Power Supply -- 11.3 -- Poloidal Field Coil Power Supply.
11.3.1 -- Central Solenoid Coils -- 11.3.2 -- Plasma Equilibrium Control Coils -- 11.3.3 -- ITER Poloidal Field Coil Power Supply -- 11.4 -- Switching Equipment -- 11.4.1 -- Switching Equipment for Experimental Facilities -- 11.4.2 -- ITER Switching Equipment -- References -- Chapter 12 -- Mechanics of Magnetic Fusion Reactors -- 12.1 -- Introduction -- 12.2 -- Tokamak Superconducting Magnet: Load Schemes -- 12.2.1 -- System of Toroidal Field Coils -- 12.2.2 -- Poloidal Field Coils and Central Solenoid -- 12.2.3 -- General Algorithm for Design and Computation -- 12.3 -- Computations for Composite Windings -- 12.4 -- Stress-Strain State of Tokamak Load-Bearing Structures -- 12.4.1 -- Global and Local Computational Models -- 12.4.2 -- Reaction to Off-Normal Current Combinations in Windings -- 12.4.3 -- Accident Scenarios -- 12.4.4 -- Thermal Mechanics of Superconducting Magnet Systems -- 12.5 -- Magneto-Elastic Stability -- 12.5.1 -- Problem Statement -- 12.5.2 -- Stability of Toroidal and Poloidal Field Systems -- 12.6 -- Strength and Stiffness Analysis of a Vacuum Vessel -- 12.6.1 -- Mechanical Loads -- 12.6.2 -- Strength and Life-Time -- 12.7 -- Stellarator Structural Analysis -- Appendix A.12.1 -- Magneto-elastic Stability of ITER Poloidal Field Coil System -- Appendix A.12.2 -- Poloidal Field Coil Magneto-elastic Stability Under the Action of Tokamak Toroidal Field -- Appendix A.12.3 -- Physical Simulation of ITER Toroidal Field Coil -- Appendix A.12.4 -- Codes and Standards for Tokamaks -- References -- Chapter 13 -- Structural and Functional Materials: Selection Criteria and Radiation Characteristics -- 13.1 -- Introduction -- 13.2 -- Selection Criteria -- 13.3 -- Comparative Characteristics of Different Materials -- 13.4 -- Plasma-Facing Materials -- 13.4.1 -- Beryllium Alloys -- 13.5 -- Heat-Conductive Materials -- 13.5.1 -- High-Strength Copper Alloys.
13.5.2 -- Radiation Characteristics of Copper Alloys.
Subject Nuclear reactors -- Design and construction.
Réacteurs nucléaires -- Conception et construction.
TECHNOLOGY & ENGINEERING -- Mechanical.
Nuclear reactors -- Design and construction
Genre/Form Electronic books.
Added Author Glukhikh, V. A. (Vasili Andreevich), editor.
Filatov, Oleg Gennadievich, editor.
Kolbasov, Boris Nikolaevich, editor.
Other Form: Print version: 0081024703 9780081024706 (OCoLC)1000045145
ISBN 9780081024713 (electronic bk.)
0081024711 (electronic bk.)
9780081024706 (print)
0081024703
Standard No. AU@ 000062895098
AU@ 000065065596
UKMGB 018831856

 
    
Available items only