Description |
1 online resource (523 p.). |
|
text txt rdacontent |
|
computer c rdamedia |
|
online resource cr rdacarrier |
Series |
Integrated Photonics: Application-Specific Design and Manufacturing
|
Contents |
Front Cover -- Integrated Photonics for Data Communication Applications -- Copyright Page -- Contents -- List of contributors -- About the editors -- Series foreword -- Guiding principles -- Introduction -- 1 Applications and key performance indicators for data communications -- 1.1 Introduction -- 1.2 Optical network case studies -- 1.2.1 High-performance computing -- 1.2.1.1 Workload requirements -- 1.2.1.2 Impact of emerging artificial intelligence workloads -- 1.2.1.3 High-performance computing link technologies -- 1.2.1.4 High-performance computing topologies |
|
1.2.1.5 Considerations for schedulers -- 1.2.1.6 Historical trends in high-performance computing technology usage from the Top500 -- 1.2.2 Enterprise data center -- 1.2.3 Hyperscale data centers-cloud computing -- 1.2.4 Hyperscale data centers-Web 2.0 -- 1.2.4.1 Introduction -- 1.2.4.2 Network hardware -- 1.2.4.3 Fiber and optical interfaces -- 1.2.4.4 Workloads -- 1.2.4.5 Machine learning hardware -- 1.3 Optical module form factors -- 1.3.1 Transceiver module architecture -- 1.4 Interconnect figures of merit -- 1.5 Major inflection points and challenges -- 1.5.1 Power and thermal |
|
1.5.2 Resource disaggregation -- 1.5.3 Interconnect cost targets -- 1.5.4 Reliability -- 1.6 Considerations for future technology -- References -- 2 Integrated lasers for data center silicon photonic-integrated circuits -- 2.1 Introduction -- 2.1.1 Types of sources needed for datacom -- 2.1.1.1 Multiwavelength lasers -- 2.1.1.1.1 Fabry-Pérot lasers -- 2.1.1.1.2 Ring lasers -- 2.1.1.2 Single frequency lasers -- 2.1.1.2.1 Distributed-feedback lasers -- 2.1.1.2.2 Distributed Bragg reflector lasers -- 2.1.1.3 Tunable lasers -- 2.1.1.3.1 Sampled-grating distributed Bragg reflector lasers |
|
2.1.1.3.2 Vernier ring lasers -- 2.1.1.4 Comb lasers -- 2.1.1.4.1 Mode-locked lasers -- 2.1.1.4.2 Kerr comb lasers -- 2.1.2 Laser solutions -- 2.1.2.1 Disaggregated sources -- 2.1.2.2 Integrated sources -- 2.1.2.2.1 Hybrid integration -- 2.1.2.2.2 Heterogeneous integration -- 2.1.2.2.3 Monolithic integration -- 2.2 Integration issues -- 2.2.1 Process integration -- 2.2.2 Process temperatures -- 2.2.3 Yield -- 2.2.4 Reliability requirements -- 2.2.5 Cost -- 2.2.6 Coupling to Si waveguide -- 2.2.7 Optical stability and feedback tolerance -- 2.3 Performance requirements -- 2.3.1 Energy requirements |
|
2.3.2 Threshold and slope efficiency -- 2.3.3 Output power -- 2.3.4 Spectral characteristics -- 2.3.5 Intensity noise -- 2.3.6 Operation temperature -- 2.4 State-of-the-art -- 2.4.1 Disaggregated -- 2.4.2 Integrated -- 2.4.2.1 Hybrid -- 2.4.2.2 Heterogeneous -- 2.4.2.3 Monolithic -- 2.5 Outlook -- 2.5.1 Next 5 years -- 2.5.2 Next 20 years -- References -- 3 Optical modulators -- 3.1 Introduction -- 3.2 Modulation mechanisms -- 3.2.1 The thermo-optic effect -- 3.2.2 The free-carrier plasma dispersion effect -- 3.2.3 Electro-absorption modulation -- 3.2.3.1 The Franz-Keldysh effect |
Note |
3.2.3.2 The Quantum-confined stark effect |
Subject |
Photonics.
|
|
Integrated circuits.
|
|
Data transmission systems.
|
|
Photonique.
|
|
Circuits intégrés.
|
|
Data transmission systems
|
|
Integrated circuits
|
|
Photonics
|
Added Author |
Glick, Madeleine.
|
|
Liao, Ling.
|
|
Schmidtke, Katharine.
|
Other Form: |
Print version: Glick, Madeleine Integrated Photonics for Data Communication Applications San Diego : Elsevier,c2023 9780323912242 |
ISBN |
032391831X electronic book |
|
9780323918312 (electronic bk.) |
|
9780323912242 |
|
0323912249 |
Standard No. |
AU@ 000074951749 |
|