Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book

Title Energetic nanomaterials : synthesis, characterization, and application / edited by Vladimir E. Zarko, Alexander A. Gromov.

Imprint Cambridge, MA : Elsevier Science, ©2016.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Print version record.
Bibliography Includes bibliographical references and index.
Summary Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application. This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials. The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world.
Contents Title page; Table of Contents; Copyright; Dedication; List of Contributors; Preface; Chapter One. Nanoenergetic Materials: A New Era in Combustion and Propulsion; 1. Introduction; 2. Combustion of Al Nanoparticles; 3. Combustion of Nanothermite Compositions; 4. Combustion of Nanoexplosives; 5. Experimental Methods to Characterize Nanoenergetic Systems Performance; 6. Conclusion; Chapter Two. Fast-Reacting Nanocomposite Energetic Materials: Synthesis and Combustion Characterization; 1. Introduction; 2. Effect of Fuel and Oxidizer Proximity on Combustion.
3. Tuning Combustion Performance of Energetic Nanocomposites Through Surface Functionalization of the Fuels4. Conclusions; Chapter Three. Nanometals: Synthesis and Application in Energetic Systems; 1. Introduction; 2. Nanometals in Energetic Systems; 3. Ignition of Energetic Systems Containing Nanoaluminum; 4. Nanoaluminum Combustion in Solid Propellants; 5. Nanoaluminum Usage in Thermites; 6. Nanoaluminum in Explosives; 7. Conclusion; Chapter Four. Mechanisms and Microphysics of Energy Release Pathways in Nanoenergetic Materials; 1. Introduction; 2. Heat Transfer.
3. Physical Response of the Oxide Shell4. Reaction Mechanisms; 5. Conclusion and Future Directions; Chapter Five. Applications of Nanocatalysts in Solid Rocket Propellants; 1. Introduction; 2. Impact of Nanocatalysts on the Thermal Decomposition of Ammonium Perchlorate as Oxidizer in Solid Propellants; 3. Impact of Metal Nanoparticles on the Thermal Decomposition of AP; 4. Impact of Metallic Oxide Nanoparticles on the Thermal Decomposition of AP; 5. Impact of Hydrogen-Storage Nanoparticles on the Thermal Decomposition of AP.
6. Impact of Nanocatalysts on the Thermal Decomposition of AP/HTPB Propellant7. Impact of Metal Nanoparticles on the Thermal Decomposition of AP/HTPB; 8. Impact of Hydrogen-Storage Nanoparticles on the Thermal Decomposition of AP/HTPB; 9. Impact of Nanocatalysts on the Combustion Performance of AP/HTPB Propellant; 10. Conclusions; Chapter Six. Nanocoating for Activation of Energetic Metals; 1. Introduction; 2. Nickel-Coated Aluminum Particles; 3. Thermoanalytical Tests; 4. Ignition Tests; 5. Iron-Coated Aluminum Particles; 6. Conclusions.
Chapter Seven. Nanostructured Energetic Materials and Energetic Chips1. Introduction; 2. 1D NSEMs and Energetic Chips; 3. Two-Dimensional NSEMs and Energetic Chips; 4. Three-Dimensional NSEMs and Energetic Chips; 5. Conclusions; Chapter Eight. Combustion Behavior of Nanocomposite Energetic Materials; 1. Introduction; 2. Nanostructured Composite High-Energy-Density Materials; 3. Nanothermites; 4. Conclusions; Chapter Nine. Catalysis of HMX Decomposition and Combustion: Defect Chemistry Approach; 1. Introduction; 2. Experimental; 3. Results and Discussion.
Subject Nanostructured materials.
Nanostructures
Nanomatériaux.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Nanostructured materials
Genre/Form Electronic book.
Added Author Zarko, Vladimir E., editor.
Gromov, Alexander, editor.
Other Form: Print version: Zarko, Vladimir E. Energetic Nanomaterials : Synthesis, Characterization, and Application. : Elsevier Science, ©2016 9780128027103
ISBN 0128027150 (electronic bk.)
9780128027158 (electronic bk.)
012802710X
9780128027103
Standard No. AU@ 000058847819
AU@ 000062692136
CHNEW 001013381
DEBSZ 482468963
GBVCP 879390972
UKMGB 017711517

 
    
Available items only