Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Lamon, Jacques.

Uniform Title Brittle fracture and damage of brittle materials and composites (Online)
Title Brittle fracture and damage of brittle materials and composites : statistical-probabilistic approaches / Jacques Lamon.

Imprint London, UK : ISTE Press Ltd ; Kidlington, Oxford, UK : Elsevier Ltd, 2016.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (xiv, 282 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references (pages 269-280) and index.
Contents Front Cover -- Dedication -- Brittle Fracture and Damage of Brittle Materials and Composites: Statistical-Probabilistic Approaches -- Copyright -- Contents -- Introduction -- Chapter 1: Flaws in Materials -- 1.1. Introduction -- 1.2. The theoretical strength and the intrinsic strength of materials -- 1.3. The fracture strength of materials -- 1.4. The flaws -- 1.5. Severity of individual flaws -- 1.6. Influence of flaw populations -- 1.7. Consequences of failure predictions -- Chapter 2: Statistical-Probabilistic Approaches to Brittle Fracture: The Weibull Model -- 2.1. Introduction -- 2.2. Weibull statistical model -- 2.3. Probability of fracture for a uniaxial non-uniform tensile stress field -- 2.4. Probability of fracture from the surface of specimens -- 2.5. Weibull multiaxial analysis -- 2.6. Multiaxial approach based on the principle of independent action of stresses -- 2.7. Summary on the Weibull statistical model -- Chapter 3: Statistical-Probabilistic Theories Based on Flaw Size Density -- 3.1. Introduction -- 3.2. Failure probability -- 3.3. Expressions for flaw size density and distribution -- 3.4. Introduction of stress state -- 3.5. Models -- 3.6. Limits of the flaw size density-based approaches -- Chapter 4: Statistical-Probabilistic Theories Based on Flaw Strength Density -- 4.1. Introduction -- 4.2. Basic equations of failure probability in the elemental strength approach -- 4.3. Elemental strength model for a uniform uniaxial stress state: Argon-McClintock development -- 4.4. The Batdorf model -- 4.5. The multiaxial elemental strength model -- Chapter 5: Effective Volume or Surface Area -- 5.1. Introduction -- 5.2. The Weibull model: the effective volume for a uniaxial stress state -- 5.3. The multiaxial elemental strength model: the effective volume for a multiaxial stress state.
5.4. Analytic expressions for failure probability, effective volume or surface area (Weibull theory) -- 5.5. Some remarkable exact expressions for failure probability, effective volume or surface area (multiaxial elemental strength theory) -- 5.5. Conclusion -- Chapter 6: Size and Stress-state Effects on Fracture Strength -- 6.1. Introduction -- 6.2. Uniform uniaxial stress state -- 6.3. Non-uniform uniaxial stress state -- 6.4. Multiaxial stress state: multiaxial elemental strength model -- 6.5. Applications -- 6.6. Conclusion -- Chapter 7: Determination of Statistical Parameters -- 7.1. Introduction -- 7.2. Methods of determination of statistical parameters -- 7.3. Production of empirical data -- 7.4. Bias and variability -- 7.5. Effect of the presence of multimodal flaw populations -- 7.6. Fractographic analysis and flaw populations -- 7.7. Examples -- Chapter 8: Computation of Failure Probability: Application to Component Design -- 8.1. Introduction -- 8.2. Computer programs for failure predictions -- 8.3. The CERAM computer program -- 8.4. Validation of the CERAM computer code -- 8.5. CERAM-based ceramic design -- 8.6. Relation test specimen/component: identification of allowable material properties -- 8.7. Determination of statistical parameters using CERAM -- 8.8. Application to multimaterials and composite materials -- 8.9. Conclusion -- Chapter 9: Case Studies: Comparison of Failure Predictions Using the Weibull and Multiaxial Elemental Strength Models -- 9.1. Introduction -- 9.2. Predictions of failure under flexural load -- 9.3. Prediction of thermal shock failure -- 9.4. Conclusion -- Chapter 10: Application of Statistical-Probabilistic Approaches to Damage and Fracture of Composite Materials and Structures -- 10.1. Introduction -- 10.2. Damage mode by successive cracking in continuous fiber reinforced composites.
10.3. Flaw populations involved in damage and pertinent flaw strength density functions -- 10.4. Matrix fragmentation: series system model -- 10.5. Approach based on Poisson process -- 10.6. The Monte Carlo simulation method -- 10.7. The fragment dichotomy-based model (parallel system) -- 10.8. Evaluation of models: comparison to experimental data -- 10.9. Ultimate failure of unidirectionnally reinforced composite (Weibull model, uniform tension) in the presence of matrix dama -- 10.10. Application to composites: unified model -- 10.11. Conclusion -- Bibliography -- Index -- Back Cover.
Subject Fracture mechanics -- Mathematical models.
Brittleness.
Mécanique de la rupture -- Modèles mathématiques.
Fragilité.
brittleness.
Brittleness
Fracture mechanics -- Mathematical models
Genre/Form Electronic book.
Electronic books.
Added Author Elsevier.
ISBN 9781785481215
1785481215
Standard No. AU@ 000067130739

 
    
Available items only