Description |
1 online resource |
|
text txt rdacontent |
|
computer c rdamedia |
|
online resource cr rdacarrier |
Bibliography |
Includes bibliographical references and index. |
Note |
Online resource; title from PDF title page (ScienceDirect, viewed August 3, 2020). |
Contents |
Introduction -- Environmental footprint -- Acoustic footprint -- Economical and technical challenges -- 1 The combustor -- 1 Overall principle of the gas turbine engine -- 1.1 Generalities and overall description -- 1.1.1 Propulsion versus power generation -- Propulsion systems -- Power generation systems -- 1.1.2 Turboprop -- 1.1.3 Turbojet -- 1.1.4 Turbofan -- 1.1.5 Turboshaft and land-based gas turbine -- 1.2 Component/module technology descriptions -- 1.2.1 Intake and fan |
|
1.2.2 Compressor -- 1.2.3 Combustor -- 1.2.4 Turbine -- 1.2.5 Exhaust nozzle -- 1.3 Thermodynamics and nonreacting uid dynamics -- 1.3.1 Thermodynamic formalism -- 1.3.2 Nonreacting uid dynamics formalism -- 1.3.3 Overall cycle and component ef ciencies -- 1.3.4 Components design, challenges, and future trends -- 2 Combustor role, requirements, and environment -- 2.1 Overall view -- 2.2 Design and requirements -- 2.3 Combustor, injector, and swirler designs -- 2.3.1 Gas turbine combustor requirements and combustion modes -- 2.3.2 Combustor physics -- 2.3.3 Combustor design |
|
2.3.4 Design of injector's swirler -- 3 Combustor architectures -- 3.1 Rich-burn quick-quench lean-burn -- 3.2 Lean direct injection -- 3.3 Lean premixed/prevaporized -- 3.4 Low swirl injector -- 3.5 Lean fully premixed -- 4 Operating conditions and ight envelope -- 2 Premixed combustion for combustors -- 1 Mathematical descriptions -- 1.1 Governing equations of reacting ows -- 1.1.1 Equivalence ratio -- 1.1.2 Equilibrium composition -- 1.1.3 Adiabatic ame temperature -- 1.2 G-equation formalism -- 2 Physical-chemical description -- 2.1 Premixed combustion overview |
|
2.2 Swirling ames overview -- 2.3 Acoustic wave- ame interactions -- 2.4 Autoignition -- 2.5 Blowout -- 2.6 Chemical kinetics -- 2.7 Combustion noise -- 2.8 Combustion instability -- 2.9 Flame speed -- 2.10 Flame stretch -- 2.11 Flammability limits -- 2.12 Flashback -- 2.13 Ignition -- 2.14 Pollutant emissions -- 2.15 Turbulent combustion -- 2.16 Turbulent mixing -- 3 Combustion modes -- 3.1 Overview -- 3.2 Prevaporized mode -- 3.3 Partially premixed mode -- 3.4 Strati ed premixed mode -- 3.5 Fully premixed mode -- 4 Effects of operating conditions on premixed combustion and the ame |
|
4.1 Current operating conditions -- 4.2 Fuel, equivalence ratio, and power settings engine matching -- 3 Premixed swirling ame stabilization -- 1 Mechanisms and processes of stabilization -- 1.1 De nitions -- 1.2 Key stabilization mechanisms: local contributors -- 1.3 Local equivalence ratio -- 1.4 Flame stretch -- 1.5 Flame speed versus ow speed -- 1.6 Reaction rates -- 1.7 Vorticity -- 1.8 Temperature, pressure, and density (equation of state) -- 1.9 Governing equations -- 1.10 Role and impact of global ow/ ame features -- 2 Framework for ame stabilization study: application |
Subject |
Combustion.
|
|
Flame.
|
|
Combustion.
|
|
Flamme.
|
|
combustion.
|
|
Combustion
|
|
Flame
|
Other Form: |
Print version: Palies, Paul. Stabilization and Dynamic of Premixed Swirling Flames : Prevaporized, Stratified, Partially, and Fully Premixed Regimes. San Diego : Elsevier Science & Technology, ©2020 |
ISBN |
0128199962 |
|
9780128199961 |
|
0128199970 |
|
9780128199978 |
|
9780128199961 (print) |
Standard No. |
AU@ 000067628786 |
|