Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Fluvial-tidal sedimentology / edited by Philip J. Ashworth, James L. Best and Daniel R. Parsons.

Imprint Amsterdam : Elsevier, ©2015.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition First edition.
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Developments in sedimentology ; volume 68
Developments in sedimentology ; v. 68.
Summary Fluvial-Tidal Sedimentology provides information on the 'Tidal-Fluvial Transition', the transition zone between river and tidal environments, and includes contributions that address some of the most fundamental research questions, including how the morphology of the tidal-fluvial transition zone evolves over short (days) and long (decadal) time periods and for different tidal and fluvial regimes, the structure of the river flow as it varies in its magnitude over tidal currents and how this changes at the mixing interface between fresh and saline water and at the turbidity maximum, the role of suspended sediment in controlling bathymetric change and bar growth and the role of fine-grained sediment (muds and flocs), whether it is possible to differentiate between 'fluvial' and 'tidally' influenced bedforms as preserved in bars and within the adjacent floodplain and what are the diagnostic sedimentary facies of tidal-fluvial deposits and how are these different from 'pure' fluvial and tidal deposits, amongst other topics. The book presents the latest research on the processes and deposits of the tidal-fluvial transition, documenting recent major field programs that have quantified the flow, sediment transport, and bed morphology in tidal-fluvial zones. It uses description of contemporary environments and ancient outcrop analogues to characterize the facies change through the tidal-fluvial transition.
Note Includes index.
Print version record.
Contents Front Cover -- Fluvial-Tidal Sedimentology -- Copyright -- Contents -- Contributors -- Preface -- Part 1: Context -- Chapter 1: Deciphering the relative importance of fluvial and tidal processes in the fluvial-marine transition -- 1.1. Introduction -- 1.2. Process Framework for the Fluvial-Tidal Transition -- 1.3. Setting of the Case Studies Used in This Chapter -- 1.3.1. Lajas Formation, Neuquén Basin, Argentina -- 1.3.2. McMurray Formation, Northern Alberta -- 1.3.3. Neslen Formation, Book Cliffs, Utah -- 1.3.4. Tilje Formation, Offshore Norway -- 1.3.5. Bluesky Formation, Peace River Area, Alberta -- 1.4. Description and Interpretation of the Case Studies -- 1.4.1. Case Study1: Lower Lajas Formation -- 1.4.2. Case Study2: McMurray Formation -- 1.4.3. Case Study3: Middle Lajas Formation -- 1.4.4. Case Study4: Middle Neslen Formation -- 1.4.5. Case Study5: Middle Neslen Formation -- 1.4.6. Case Study6: Tilje Formation -- 1.4.7. Case Study7: Bluesky Formation -- 1.5. Discussion -- 1.6. Conclusions -- Acknowledgments -- References -- Part 2: Modern -- Chapter 2: Estuarine turbidity maxima revisited: Instrumental approaches, remote sensing, modeling studies, and new direction -- 2.1. Introduction -- 2.1.1. Purpose: Toward a New Understanding -- 2.1.2. What Is an ETM and Why Does It Matter? -- 2.1.3. Scope of Paper -- 2.2. In Situ Measurements: Recent Advances -- 2.2.1. Acoustical Measurements and Instruments -- 2.2.1.1. Uses of the Acoustic Doppler Velocimeter -- 2.2.1.2. ADCP methods -- 2.2.1.3. Other acoustic methods -- 2.2.2. Optical Measurements and Instruments -- 2.2.2.1. Optical backscatter sensors -- 2.2.2.2. The laser in situ scattering transmissometer -- 2.2.2.3. Holography and floc cameras -- 2.2.2.4. Inherent optical property measurements and theoretical modeling of particle optics.
2.3. Building an Integral Understanding of ETM via Remote Sensing: Possibilities and Challenges -- 2.3.1. Measuring Turbidity Remotely -- 2.3.2. Lessons Learned from Remote Measurements in Estuaries -- 2.4. ETM Dynamic: Insights from Theory, Modeling and Observations -- 2.4.1. Estuarine Circulation and ETM Formation -- 2.4.2. The Traditional Model -- 2.4.3. More Complex Models -- 2.4.4. Integral Analysis of a Channelized ETM -- 2.5. Discussion: Toward a More Complete Understanding of ETM Dynamics -- 2.5.1. Making Use of New In Situ and Remote Sensing Capabilities -- 2.5.2. Dynamical Questions -- 2.5.2.1. Trapping mechanisms and the material trapped -- 2.5.2.2. Nonstationary aspects of ETM -- 2.5.2.3. Distinguishing human and climatic impacts on ETM dynamics and ecosystems -- 2.5.2.4. ETM dynamics and contaminants -- 2.6. Summary and Conclusions -- Acknowledgments -- References -- Chapter 3: Sedimentological trends across the tidal-fluvial transition, Fraser River, Canada: A review and some broader impli -- 3.1. Introduction -- 3.1.1. Fraser River, Canada -- 3.2. Depositional Trends Across the TFT of the Fraser River -- 3.2.1. Sedimentological Trends -- 3.2.2. Ichnological Trends -- 3.2.3. Palynological and Geochemical Trends -- 3.3. The Broader Implications of Depositional Trends from the Lower Fraser River -- 3.3.1. Expected Variations in Depositional Trends -- 3.4. Conclusions -- References -- Chapter 4: Three-dimensional meander bend flow within the tidally influenced fluvial zone -- 4.1. Introduction -- 4.2. Methods -- 4.2.1. Field Area -- 4.2.2. Field Methods -- 4.3. Results -- 4.3.1. High River-Neap Tide -- 4.3.2. Low River-Spring Tide -- 4.3.3. Repeated Bend Apex Measurements at LRST -- 4.4. Discussion -- 4.5. Conclusions -- References.
Chapter 5: Sedimentology of a tidal point-bar within the fluvial-tidal transition: River Severn Estuary, UK -- 5.1. Introduction -- 5.2. Severn Estuary -- 5.2.1. Sampling Sites -- 5.3. Methods -- 5.3.1. Stratigraphic Descriptions -- 5.3.1.1. Pollen descriptions -- 5.4. Results -- 5.4.1. Sedimentary Facies -- 5.4.1.1. F1: Red mudstone -- 5.4.1.2. F2: Blue clay facies -- 5.4.1.3. F3: Poorly sorted coarse sand and gravel facies -- 5.4.1.4. F4: Homogeneous sand facies -- 5.4.1.5. F5: Heterolithic facies -- 5.4.1.6. F6: Orange-brown silty-mud facies -- 5.4.1.7. F7: Gray-dark organic matter stratification in a mud matrix facies -- 5.4.1.8. F8: Gray-brown marsh facies -- 5.4.2. Summary of Facies Assemblages -- 5.4.3. Distinctiveness of the Transitional Facies Assemblage -- 5.4.3.1. The first unit is the marsh (F8) facies -- 5.4.3.2. The second unit is the heterolithic facies (F5) -- 5.4.3.3. The third unit is constituted of fine to coarse sand (F3+F4) -- 5.4.3.4. Box tray samples of Rodley sand bar -- 5.4.4. Pollen -- 5.4.4.1. Fluvial (Core 4) -- 5.4.4.2. Transition (Core 5) -- 5.4.4.3. Marine (Core 7) -- 5.4.4.4. Detrended correspondence analysis -- 5.4.5. Diatoms -- 5.4.5.1. Fluvial (Core 4) -- 5.4.5.2. Transitional (Core 5) -- 5.4.5.3. Marine (Core 7) -- 5.5. Discussion -- 5.5.1. Allogenic Processes -- 5.5.2. Autogenic Processes -- 5.5.3. Model of Deposition -- 5.6. Conclusions -- Acknowledgments -- References -- Part 3: Ancient -- Chapter 6: Mid to late Holocene geomorphological and sedimentological evolution of the fluvial-tidal zone: Lower Columbia Riv -- 6.1. Introduction -- 6.2. Background -- 6.2.1. LCR: Geological Setting and Study Reach -- 6.3. Methodologies -- 6.3.1. Sediment Core Collection and OSL Sampling -- 6.3.2. OSL Laboratory Analysis -- 6.4. Results -- 6.4.1. Mid-Holocene to Present Depositional Patterns.
6.4.2. LCR Depositional Patterns: 4.3-2.0ka -- 6.4.3. LCR Depositional Patterns: 2.0-1.0ka -- 6.4.4. LCR Depositional Patterns: 1.0ka to Present -- 6.5. Discussion -- 6.5.1. LCR Mid to Late Holocene Depositional Setting: "Bay-Head Delta" Hypothesis? -- 6.5.2. LCR Mid to Late Holocene Geomorphic/Sedimentological Model -- 6.6. Conclusions -- Acknowledgments -- References -- Chapter 7: Palaeo-Orinoco (Pliocene) channels on the tide-dominated Morne L'Enfer delta lobes and estuaries, SW Trinidad -- 7.1. Introduction -- 7.2. Geological Background -- 7.2.1. Regional Tectonic and Stratigraphic Setting -- 7.2.2. Methodology and Data Sets -- 7.2.3. Architecture of Deltaic and Estuarine Units in the MLE Succession -- 7.3. Palaeo-Orinoco Context of Tidal-Fluvial Channels -- 7.4. Criteria for the Recognition of Tidal Signals in and Around the Channels -- 7.4.1. Fluid mud Layers -- 7.4.2. Palaeoflow Indicators: Bidirectional Ripples -- 7.4.3. Cross-Strata -- 7.4.4. Tidal Rhythmites -- 7.4.4.1. Rhythmites with tidal bundling from asymmetric tidal cycles (with double mud drapes) -- 7.4.4.2. Tidal bundling from a series of spring-neap tides -- 7.4.5. Flaser (Frequent Mud Drapes), Wavy, Lenticular, and "Pin-Stripe" Bedding -- 7.5. Examples of Palaeo-Orinoco Tidal-Fluvial Channels -- 7.5.1. Regressive Channels (Delta Plain and Delta-Front Distributary Channels) -- 7.5.1.1. Fluvial-tidal distributary channels on delta plain or entering embayment -- 7.5.1.2. Fluvial-tidal distributary channels cutting down onto the delta front -- 7.5.2. Transgressive Estuarine Channels -- 7.5.2.1. Transgressive inner estuarine channel -- 7.5.2.2. Transgressive outer estuarine channel -- 7.5.3. Facies Comparison Between Regressive and Transgressive Tidal Channels -- 7.6. Discussion -- 7.7. Conclusions -- Acknowledgments -- References.
Chapter 8: The ichnology of the fluvial-tidal transition: Interplay of ecologic and evolutionary controls -- 8.1. Introduction -- 8.2. Ecologic Controls on the Ichnofauna at the Fluvial-Tidal Zone: Insights from Neoichnology -- 8.3. Case Studies -- 8.3.1. Carboniferous of Kansas (Tonganoxie Sandstone Member) -- 8.3.2. Upper Carboniferous of Nova Scotia (Coal Mine Point Channel Body) -- 8.3.3. Upper Carboniferous of Alabama (Mary Lee Coal Zone) -- 8.3.4. Upper Carboniferous of Indiana (Mansfield Formation) -- 8.3.5. Lower Permian of New Mexico (Robledo Mountains Formation) -- 8.3.6. Upper Cretaceous of Spain (Tremp Formation) -- 8.3.7. Lower Oligocene to lower Miocene of Venezuela (Guafita Formation) -- 8.3.8. Lower Miocene of Venezuela (Oficina Formation) -- 8.3.9. Lower Miocene of Northern Brazil (Barreiras Formation) -- 8.3.10. Upper Miocene of Western Brazil (Solimões Formation) -- 8.4. Summary of Observations and Discussion: Ecologic and Evolutionary Controls -- 8.4.1. Ecologic Controls -- 8.4.2. Evolutionary Controls -- 8.5. Conclusions -- Acknowledgments -- References -- Chapter 9: A reappraisal of large, heterolithic channel fills in the upper Permian Rangal Coal Measures of the Bowen Basin, Q -- 9.1. Introduction -- 9.2. Geological Setting -- 9.3. Previous Research -- 9.4. Facies Analysis -- 9.5. Evidence for Tidal Influence -- 9.5.1. Stratigraphic Context -- 9.5.2. Inclined Heterolithic Stratification -- 9.5.3. Small-Scale Sedimentary Structures and Trace Fossils -- 9.5.4. Palaeocurrent Data -- 9.5.5. Fossil Fish -- 9.6. Discussion -- 9.7. Conclusions -- Acknowledgments -- References -- Chapter 10: Facies and architecture of unusual fluvial-tidal channels with inclined heterolithic strata: Campanian Neslen For -- 10.1. Introduction -- 10.2. Regional Geology and Previous Work.
Subject Sediment transport.
Sedimentology.
Sédiments (Géologie) -- Transport.
Sédimentologie.
SCIENCE -- Earth Sciences -- Geography.
SCIENCE -- Earth Sciences -- Geology.
Sediment transport
Sedimentology
Added Author Ashworth, Philip J.
Best, J. L.
Parsons, Daniel R.
ISBN 0444635394 (electronic bk.)
9780444635396 (electronic bk.)
9780444635297
0444635297
Standard No. AU@ 000061147393
CHBIS 010796135
CHDSB 006479792
CHVBK 355983508
CHVBK 403946190
DEBSZ 482468319
GBVCP 856733229

 
    
Available items only