Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Sridharan, K., author.

Title Spectral methods in transition metal complexes / K. Sridharan.

Publication Info. Amsterdam : Elsevier, [2016]
©2016

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource : illustrations (some color)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file
Bibliography Includes bibliographical references and index.
Note Online resource; title from PDF title page (EBSCO, viewed February 22, 2016).
Summary Spectral Methods in Transition Metal Complexes provides a conceptual understanding on how to interpret the optical UV-vis, vibrational EPR, and NMR spectroscopy of transition metal complexes. Metal complexes have broad applications across chemistry in the areas of drug discovery, such as anticancer drugs, sensors, special materials for specific requirements, and catalysis, so a thorough knowledge in preparation and characterization of metal complexes, while niche, is critical. Accessible to both the seasoned researcher and the graduate student alike, this book provides readers with a single source of content that addresses spectral methods in transition metal complexes.
Contents Front Cover -- Spectral Methods in Transition Metal Complexes -- Copyright -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- Chapter 1: The Electromagnetic Spectrum -- 1.1 Transition Metal Complexes -- 1.2 Electromagnetic Spectrum -- 1.2.1 Relation Between Frequency and Wavelength -- Wavelength -- 1.3 Regions of the Electromagnetic Spectrum -- 1.4 Effect of Electromagnetic Radiation on Matter -- 1.4.1?-Rays -- 1.4.2 X-Rays -- 1.4.3 Ultraviolet and Visible (UV-Vis) Radiation -- 1.4.4 IR Radiation -- 1.4.5 Microwave Radiation -- 1.4.6 Nuclear Magnetic Resonance -- 1.4.7 Electron Paramagnetic Resonance -- 1.5 Summary -- 1.5.1 IR and Complexes -- 1.5.2 Electronic Spectra and Complexes -- 1.5.3 NMR and Complexes -- 1.5.4 EPR and Complexes -- References -- Chapter 2: Electronic Spectroscopy -- 2.1 Symmetry, Symmetry Elements, and Symmetry Operations -- 2.1.1 Symmetry -- 2.1.2 Symmetry Elements -- 2.1.3 Symmetry Operation -- Definition of Symmetry Elements -- 1.2.1 Principal or Proper Axis of Symmetry, Cn -- C2 Axis of Symmetry -- C3 Axis of Symmetry -- C4 Axis of Symmetry -- C6 Axis of Symmetry -- Plane of Symmetry,? -- Vertical Mirror Plane,?v -- Horizontal Mirror Plane,?h -- Dihedral Plane,?d -- Center of Symmetry, i -- Improper Axis of Symmetry, Sn -- 2.2 Important Geometries of Complexes -- 2.2.1 Octahedral Complex -- 2.2.2 Square Planar Complex -- 2.2.3 Tetrahedral Complex -- 2.3 Term Symbols -- 2.3.1 Terms -- Electron Repulsion Parameters -- 2.3.2 Spin-Orbit Coupling -- Types of Spin-Orbit Coupling -- RS Coupling Scheme -- jj Coupling -- Spin-Orbit Coupling Parameters -- Parameter? -- Parameter? -- 2.3.3 States -- Specification of a State -- Normal and Inverted Multiplets -- Derivation of? -- 2.3.4 Microstates -- 2.3.5 Derivation of Term Symbols -- Determination of Maximum ML Value -- Possible ML Values.
Possible MS Values -- 2.4 Selection Rules -- Transition Moment Integral, Q -- Components of the Wave Function -- Spin Selection Rule -- Laporte Selection Rule -- 2.4.1 Group Theory and Selection Rules -- Direct Product Concept -- Radius Vector, r -- Reduction of the Reducible Representation -- Forbidden in Oh but Allowed in Td -- 2.4.2 Breakdown of Selection Rules -- Spin-Selection Rule Breakdown -- What Is Spin-Orbit Coupling? -- Spin-Orbit Coupling of A and E Terms -- Spin-Orbit Coupling of the T Term -- Mixing of States and Effect of Spin-Orbit Coupling -- Laporte Selection Rule Breakdown -- Vibronic Coupling -- Intensity Stealing -- Reduction of Symmetry -- 2.5 Prediction and Assignment of Transitions -- 2.5.1 Orgel Diagram -- Limitations of the Orgel Diagram -- 2.5.2 Configuration, Free-Ion Term, Ground, and ExcitedTerms in a Weak Octahedral Field -- Hole Formalism -- Advantage of Hole Formalism -- 2.5.3 Splitting of d-Orbitals in Different Geometries -- 2.5.4 Free Ions in Medium and Strong Crystal Fields -- Strong-Field Configurations -- 2.5.5 Weak to Strong-Field Transition -- Free-Ion Terms and Cubic Terms -- 2.5.6 Terms Arising From a Strong-Field Configuration -- d1 System -- d2 System -- t2g2 System -- t2g1eg1 System -- Lowest Term of a Strong-Field Configuration -- eg2 Configuration -- d3 Strong-Field Configuration -- Strong and Weak-Field Cases: Difference -- Weak-Field Case -- Strong-Field Case -- Noncrossing Rule -- 2.5.7 Tanabe-Sugano Diagrams -- 2.6 Band Intensities, Band Widths, and Band Shapes -- 2.6.1 Band Intensities -- 2.6.2 Band Widths -- Vibration and Band Width -- Spin-Orbit Coupling and Band Width -- Jahn-Teller Effect and Band Width -- CT Bands and Band Width -- 2.6.3 Band Shapes -- Vibrational Interaction and Band Shape -- Spin-Orbit Coupling and Band Shape -- Lowering of Symmetry -- 2.7 Complexes and Color.
2.8 Electronic Spectra of Individual Ions -- 2.8.1 Electronic Spectrum of a d1 System -- 2.8.2 Electronic Spectrum of a d9 System -- 2.8.3 Electronic Spectrum of a d2 System -- 2.8.4 Electronic Spectrum of a d8 System -- 2.8.5 Electronic Spectrum of a d3 System -- 2.8.6 Electronic Spectrum of a d7 System -- 2.8.7 Electronic Spectrum of a d4 System -- 2.8.8 Electronic Spectrum of a d6 System -- 2.8.9 Electronic Spectrum of a d5 System -- 2.9 Cis- and Trans-Complexes -- 2.10 Rule of Average Environment -- 2.11 Nephelauxetic Effect -- 2.12 Spectra of Tetrahedral Complexes -- 2.13 CT Spectra (Charge Transfer) -- 2.13.1 How to Distinguish Between CT and d-d Transitions -- 2.13.2 Types of CT Transitions -- LMCT Transition -- MLCT Transition -- References -- Chapter 3: IR Spectroscopy -- 3.1 Some Fundamentals -- 3.1.1 Fundamental Vibrations or Normal Vibrations -- Nonlinear Molecules -- Linear Molecules -- 3.1.2 Overtone and Combination Bands -- Overtones -- Combination Bands -- Difference Bands -- 3.2 Selection Rule for IR Spectra -- 3.3 Selection Rule for Raman Spectra -- 3.4 Rule of Mutual Exclusion -- 3.5 IR Spectra and Inorganic Compounds -- 3.5.1 SALC and Prediction of IR- and Raman-Active Bands -- 3.5.2 What Is SALC and Why Is It Necessary? -- Methods to Obtain SALCs -- Basis Vector Method -- Constructing SALCs -- 3.5.3 Choosing the Basis Set and Linear Combination -- 3.5.4 Expression for SALCs -- 3.5.5 Normalization -- Projection Operator Method -- 3.5.6 Transformations of the Basis Vectors -- 3.5.7 SALC Functions and Basis Sets -- 3.5.8 Normalization -- 3.5.9 Interpretation of SALCs -- 3.5.10 Applications -- Examples -- Derivation of the Point Group of trans-N2F2 -- C2h Character Table -- Derivation of the Reducible Representation -- Identity Operation, E -- C2 Operation -- i Operation --?h Operation -- Reducible Representation.
Obtaining the Irreducible Representation -- Interpretation of the Result -- Number of IR- and Raman-Active Vibrations -- IR-Active Vibrations -- Raman-Active Vibrations -- 3.5.11 Interpretation of IR Spectra -- 3.6 IR Spectra and Complexes -- 3.7 Coordination and Ligand Vibrations -- 3.7.1 Nitrato Ligand, NO3- -- 3.7.2 Carboxylate Ion -- 3.7.3 Sulfate Ion -- 3.7.4 N, N-Dimethylacetamide -- 3.7.5 Cyano Complexes -- Factors Affecting?CN -- Effect of Electronegativity -- Effect of Oxidation State -- Effect of Coordination Number -- 3.7.6 Dimethyl Sulfoxide Complexes -- 3.7.7 Metal Carbonyls -- Terminal and Bridging Carbonyls -- Structure of Metal Carbonyls -- Mononuclear Carbonyls -- Polynuclear Carbonyls -- 3.8 Isotopic Substitution and Application -- References -- Chapter 4: EPR Spectroscopy -- 4.1 Principle of EPR Spectroscopy -- 4.1.1 Derivative Curves -- 4.1.2 Fine Splitting -- 4.1.3 Hyperfine Splitting -- Explanation -- Energy of Levels -- Characteristics of A -- Selection Rules -- How Many Lines? -- Hyperfine Splittings in Various Structures -- 4.2 g-Values in Different Environments -- 4.2.1 Solid-State and Frozen Solutions -- gÆ"and gll -- gxx, gyy, and gzz -- 4.2.2 Characteristics of g -- Factors Affecting the Magnitudes of g-Values -- 4.3 Zero-Field Splitting and Kramer's Degeneracy -- 4.3.1 Zero-Field Splitting -- 4.3.2 Kramer's Degeneracy -- Separation Between Lines and? -- 4.3.3 Magnitude of Zero-Field Splitting and Signal -- 4.4 Effective Spin, S' -- Explanation -- 4.5 Mixing of States and Zero-Field Splitting -- Explanation -- 4.6 Anisotropy in Hyperfine Coupling Constant -- 4.7 Line Widths in Solid-State EPR -- 4.7.1 Spin-Lattice Relaxation -- 4.7.2 Spin-Spin Relaxation -- 4.7.3 Spin Exchange Processes -- Exchange Between Similar or Equivalent Ions -- Exchange Between Dissimilar Ions -- 4.8 Applications of EPR -- Discussion.
4.9 g-Values for Different Ground Terms -- Tg Ground Terms -- 4.10 g-Value and Structure -- Ground State in Elongation and Compression in Tetragonal Distortion -- Elongation -- Compression -- g-Value and Ground State -- 4.10.1 Magic Pentagon -- 4.11 g-Value and Square Planar Structure -- 4.12 g-Value and Covalent Character -- 4.13 All and Structure -- 4.14 G-Factor and Nature of the Ligand -- 4.15. EPR Spectra of dn Systems -- 4.15.1 d1 System -- Octahedral Field -- Tetrahedral Field -- Studying the Spectrum -- 4.15.2 d2 System -- Octahedral Field -- Tetrahedral Field -- Examples -- 4.15.3 d3 System -- Octahedral Field -- Examples -- 4.15.4 d4 System -- Octahedral Field -- 4.15.5 d5 System -- Strong-Field (Low-Spin) Oh S = 1/2 -- Weak-Field, High-Spin Case, S = 5/2 -- Fe(III) Complexes -- Undistorted Octahedral Complexes -- Slightly Distorted Fe(III) Complexes -- Highly Distorted Fe(III) Complex -- 4.15.6 d6 System -- 4.15.7 d7 System -- Octahedral Symmetry -- Tetrahedral Symmetry -- 4.15.8 d8 High-Spin System -- 4.15.9 d9 System -- Octahedral Field -- References -- Chapter 5: NMR Spectroscopy -- 5.1 Principles of NMR -- 5.1.1 Precessional Motion or Larmor Precession -- 5.1.2 Precessional Frequency,? -- 5.1.3 Energy Levels and Transition -- Resonance -- Field Sweep and Frequency Sweep Methods -- Relation Between? and? -- 5.2 Ground and Excited State Population -- 5.3 Relaxation of the Nuclei -- Mechanism of Relaxation -- 5.4 Spin-Lattice Relaxation (T1) -- 5.5 Spin-Spin Relaxation (T2) -- 5.6 Comparison of Relaxation Times -- 5.7 Width of NMR Lines -- Explanation -- 5.8 Basic Types of Information From NMR -- 5.8.1 Chemical Shift -- Origin of Chemical Shift -- Applied and Effective Magnetic Field -- Factors Affecting Chemical Shift -- Electronegativity and Chemical Shift -- van der Waals Deshielding -- Anisotropic Effect and Chemical Shift.
Subject Transition metal complexes -- Spectra.
Complexes de métaux de transition -- Spectre.
SCIENCE -- Chemistry -- Inorganic.
Transition metal complexes -- Spectra
Other Form: Print version: Sridharan, K., (Professor of chemistry). Spectral methods in transition metal complexes. Amsterdam : Elsevier, [2016] 0128095911 (OCoLC)935983405
ISBN 9780128096543 (electronic bk.)
0128096543 (electronic bk.)
9780128095911
0128095911
Standard No. AU@ 000057215005
AU@ 000066135453
AU@ 000068127271
CHBIS 010605026
CHBIS 010796194
CHVBK 361780435
CHVBK 403947731
DEBSZ 480346909
DEBSZ 482469226
GBVCP 879418427
UKMGB 017711540

 
    
Available items only