Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Reliability of semiconductor lasers and optoelectronic devices / edited by Robert W. Herrick and Osamu Ueda.

Imprint Duxford : Woodhead Publishing, 2021.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
still image sti rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Woodhead Publishing series in electronic and optical materials
Woodhead Publishing series in electronic and optical materials.
Contents Front Cover -- Reliability of Semiconductor Lasers and Optoelectronic Devices -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- Acknowledgments -- 1 Introduction to optoelectronic devices -- 1.1 Introduction -- 1.2 Optoelectronic applications -- 1.2.1 InGaN-based light-emitting diodes for high-efficiency lighting -- 1.2.2 Lasers for sensing arrays -- 1.2.3 Lasers for data- and telecommunications -- 1.2.4 The history of the laser -- 1.3 Principles of operation for optoelectronic components -- 1.3.1 Light emission -- 1.3.1.1 Light emission in gas plasmas: a review -- 1.3.1.2 Stimulated emission in gas lasers -- 1.3.1.3 Spontaneous and stimulated emission from semiconductors -- 1.3.2 Light-emitting diodes -- 1.3.2.1 Carrier confinement -- 1.3.2.2 Light extraction -- 1.3.2.3 Heat extraction -- 1.3.2.4 "Rollover" or "droop" -- 1.3.2.5 "The green gap" -- 1.3.3 Lasers -- 1.3.3.1 What additional design features exist with lasers that are not present with an light-emitting diode? -- Adding a "population inversion" -- Adding waveguiding -- Adding mirrors -- 1.3.3.2 Vertical-cavity surface-emitting lasers -- 1.3.3.3 Direct modulation -- 1.3.4 Modulators -- 1.3.5 Photodetectors -- 1.3.5.1 Photodiodes -- 1.3.5.2 Avalanche photodiodes -- 1.4 Method of fabrication -- 1.4.1 Epitaxial growth -- 1.4.2 Wafer fabrication -- 1.4.3 Wafer test -- 1.4.4 Singulation and packaging -- 1.4.5 Burn-in -- 1.5 Critical metrics -- 1.5.1 Beam divergence -- 1.5.2 Single mode versus multimode -- 1.5.3 Coherence length -- 1.5.4 Power -- 1.5.5 Modulation rate -- 1.6 Laser and light-emitting diode reliability -- 1.6.1 Reliability qualification -- 1.6.2 Quality control -- 1.7 New technology developments -- 1.7.1 Fiber optics -- 1.7.2 The future of optoelectronic devices -- 1.7.2.1 Photonic integrated circuits -- 1.7.2.2 LiDAR.
1.7.2.3 Quantum dot lasers -- 1.7.2.4 Photonic band gap/plasmonics -- 1.7.2.5 High-efficiency lighting and display markets -- 1.8 Summary -- References -- 2 Reliability engineering in optoelectronic devices and fiber optic transceivers -- 2.1 Reliability engineering organizations and management -- 2.1.1 Why does it matter? Why do we need reliability testing? -- 2.1.2 Staffing a reliability department -- 2.2 Developing a product: design for reliability -- 2.2.1 Collecting information on customer expectations -- 2.2.2 Designing in margin and product tradeoffs -- 2.2.3 Continuous improvement -- 2.2.4 Ongoing reliability test -- 2.2.5 Failure mode and effects analysis -- 2.3 Developing a test plan: standards-based testing versus customized testing -- 2.3.1 Accelerated aging: an overview -- 2.3.2 Acceleration factors -- 2.3.3 Categories of reliability testing -- 2.3.3.1 Accelerated aging with temperature and bias -- 2.3.3.2 Corrosion aging -- 2.3.3.3 Mechanical aging -- 2.3.3.4 Electrostatic discharge testing -- 2.3.4 Reliability test standards -- 2.3.5 Developing a custom reliability test program for subcomponents -- 2.3.5.1 Device acceleration models -- 2.3.5.2 Acceleration risk -- 2.3.5.3 Limitations in reliability testing -- 2.3.6 Maverick versus wearout reliability failure modes -- 2.4 Test engineering and data collection -- 2.4.1 Subcomponent-, component-, and system-level reliability testing -- 2.4.2 Building and running a reliability test lab -- 2.5 Data collection and analysis -- 2.5.1 Data collection and storage -- 2.5.2 Data reduction -- 2.5.3 Key terms in reliability analysis -- 2.5.4 Reliability models -- 2.5.5 Stress-strength model -- 2.5.6 Developing a burn-in for the product -- 2.5.7 Calculating random failure rates -- 2.5.8 Writing reliability reports -- 2.6 Failure analysis -- 2.7 Physics of failure and common failure mechanisms.
2.8 Product release, ongoing monitoring, and postrelease support -- 2.9 Conclusion -- 2.9.1 Future challenges in optoelectronic reliability engineering -- 2.9.2 Chapter summary and take-aways -- 2.9.3 Suggestions for resources for further information -- References -- 3 Case studies in fiber optic reliability -- 3.1 Introduction -- 3.2 Group 1: issues that were caught before product release -- 3.2.1 Case 1: "Hey, you cooked my VCSELs!" -- 3.2.2 Case 2: new integrated circuit packaging creates problems -- 3.2.3 Case 3: great mean lifetime, but a wide distribution of lifetime -- 3.2.4 Case 4: locked into a "no-burn-in" product definition -- 3.3 Group 2: cases that had reliability issues from the start, but were not detected in the reliability qualification -- 3.3.1 Case 5: reliability monitor fails to detect ongoing reliability shortcomings -- 3.3.2 Case 6: "But the part's never going to operate at 85°C, 85% relative humidity!!!" -- 3.3.3 Case 7: broken design rules + no reliability testing=disaster -- 3.3.4 Case 8: compact disk lasers in gigabaud link modules -- 3.4 Group 3: parts that were reliable after release, but later developed reliability issues during high-volume manufacturing -- 3.4.1 Case 9: the dangers of copper contamination -- 3.4.1.1 Case 9a: The flaming power supply -- 3.4.1.2 Case study 9b: copper contamination in p-metal target -- 3.4.1.3 Case study 9c: no supplier purity checks -- 3.4.2 Case 10: high burn-in failure rate foretells early wearout failure -- 3.5 Conclusion -- References -- 4 Materials science of defects in GaAs-based semiconductor lasers -- 4.1 Introduction -- 4.2 Characteristics of simple point defects in GaAs -- 4.2.1 Point defect thermodynamics and the Fermi level effect -- 4.2.2 Negative temperature coefficient of gallium vacancies in GaAs -- 4.2.3 Relevance to MOCVD and MBE growth -- 4.2.4 Quasi Fermi level effect.
4.2.5 DX and EL2 defects -- 4.3 Dislocations in GaAs -- 4.3.1 Basic properties of dislocations -- 4.3.2 Structure of dislocations -- 4.3.3 Thermal glide of dislocations -- 4.3.3.1 Glide velocity -- 4.3.3.2 Diffusive glide -- 4.3.4 Point defect and solute atmospheres around dislocations -- 4.3.4.1 Breakaway stress -- 4.3.4.2 Experimental evidence -- 4.3.5 Thermal climb of dislocations -- 4.3.5.1 Overview -- 4.3.5.2 Osmotic force -- 4.3.5.3 Climb in the two-atom basis of GaAs -- 4.3.5.4 Other considerations -- 4.3.6 Electrical and optical properties -- 4.3.6.1 Overview -- 4.3.6.2 Origin of traps -- 4.3.6.3 A connection between electronic states and glide velocity -- 4.3.6.4 Optical properties of dislocations -- 4.4 Epitaxial integration of GaAs-based materials on silicon -- 4.4.1 Critical thickness for dislocation nucleation -- 4.4.2 Dislocations formed in the heteroepitaxy of GaAs on Si -- 4.4.2.1 Increase film thickness -- 4.4.2.2 Thermal cyclic anneals -- 4.4.2.3 Dislocation filter layers -- 4.4.2.4 Geometric filters -- 4.5 Recombination-enhanced processes -- 4.5.1 Background -- 4.5.1.1 The phonon kick model -- 4.5.2 Recombination-enhanced dislocation glide -- 4.5.2.1 Features of REDG -- 4.5.2.2 Mechanism of REDG -- 4.5.2.3 Impact on lasers -- 4.5.3 Recombination-enhanced dislocation climb -- 4.5.3.1 Features of REDC -- 4.5.3.2 Origin of point defects -- 4.5.4 Tolerance to rapid degradation -- 4.5.4.1 Bandgap energy -- 4.5.4.2 Electronic states associated with defects -- 4.5.4.3 Thermodynamics of defects -- 4.5.4.4 External and internal strain -- 4.6 Outlook -- References -- 5 Grown-in defects and thermal instability affecting the reliability of lasers: III-Vs versus III-nitrides -- 5.1 Introduction -- 5.2 Grown-in defects in III-Vs semiconductors for optoelectronics -- 5.2.1 Classification of grown-in defects -- 5.2.2 Interface defects 1.
5.2.3 Interface defects 2 -- 5.2.3.1 Change in the nature of dislocations (formation of pure edge or screw dislocations) -- 5.2.3.2 Annihilation reaction of misfit dislocations -- 5.2.3.3 Formation of the dislocation network at an intersecting point -- 5.2.4 Bulk defects -- 5.2.4.1 Defects in heavily Fe-doped InP crystals -- 5.2.4.2 Defects in heavily (or highly) doped InGaAsP crystals -- 5.2.4.3 Defects in heavily or highly doped AlGaAs crystals -- 5.2.4.4 Defects in undoped InGaAsP crystals on GaAs substrates -- 5.3 Influence of grown-in defects on device reliability and degradation in III-V based optoelectronics -- 5.3.1 Influence of dislocations on reliability -- 5.3.2 Two-step degradation processes (REDG and REDC) -- 5.3.2.1 Two-step degradation process in ridge-waveguide-type lasers (see Fig. 5.20) -- 5.3.2.2 Two-step degradation process in AlGaAs VCSELs (see Fig. 5.21) -- 5.3.3 Influence of dislocation loops on reliability -- 5.3.4 Influence of precipitates in heavily doped InGaAsP crystals on reliability -- 5.3.5 Influence of inclusions (In-rich) on reliability -- 5.4 Grown-in defects in III-nitrides -- 5.4.1 Misfit dislocations -- 5.4.2 Threading dislocation and optical properties -- 5.4.3 V-defects in GaN -- 5.4.4 Influence of dislocations on device reliability in GaN-based laser diodes -- 5.4.5 Mg-related pyramidal defects -- 5.4.6 Gradual degradation of GaN-based laser diodes -- 5.5 Composition-modulated structures and ordered structures in III-V based optoelectronics -- 5.5.1 Composition-modulated structures in III-V alloy semiconductors -- 5.5.1.1 Basic structure -- 5.5.1.2 Degree of compositional variation in the modulated structure -- 5.5.1.3 Origins of the two types of periodicities -- 5.5.1.4 Origin for the direction of modulation -- 5.5.2 Ordered structures in III-V alloy semiconductors.
Subject Semiconductor lasers -- Reliability.
Optoelectronic devices -- Reliability.
Lasers à semi-conducteurs -- Fiabilité.
Dispositifs optoélectroniques -- Fiabilité.
Optoelectronic devices -- Reliability
Semiconductor lasers -- Reliability
Added Author Herrick, Robert W.
Ueda, Osamu.
Other Form: Print version: 0128192542 9780128192542 (OCoLC)1144880559
ISBN 9780128192559 (electronic bk.)
0128192550 (electronic bk.)
9780128192542
0128192542
Standard No. AU@ 000068860659
AU@ 000068889411
UKMGB 020103805

 
    
Available items only