Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Yu, Hang Z., author.

Title Additive friction stir deposition / Hang Z. Yu.

Publication Info. Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2022]
©2022

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (xvi, 333 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Additive manufacturing materials and technologies
Additive manufacturing materials and technologies
Contents Front Cover -- Additive Friction Stir Deposition -- Copyright Page -- Contents -- Preface -- Book endorsement: Additive Friction Stir Deposition -- 1 Introduction -- 1.1 Additive manufacturing for metals -- 1.2 Solid-state metal additive manufacturing -- 1.3 Additive friction stir deposition -- 1.4 Organization of this book -- References -- 2 Process fundamentals -- 2.1 Elements of friction theory -- 2.2 Fundamentals of heat and mass transfer -- 2.2.1 Heat transfer -- 2.2.2 Mass transfer -- 2.3 Basic principle of additive friction stir deposition -- 2.4 Establishment of an integrated in situ monitoring system: real-time measurement of temperature, force, torque, and mate ... -- 2.5 Temperature evolution in the deposited material and substrate -- 2.5.1 Thermal history of the deposited materials -- 2.5.2 Dependence of thermal features on the processing conditions in additive friction stir deposition -- 2.5.3 Power law relationships of peak temperature and processing parameters -- 2.5.4 Temperature evolution of the substrate -- 2.6 Force and torque evolution -- 2.6.1 Multiple phases of force and torque evolution -- 2.6.2 Dependence of steady-state force and torque on processing conditions -- 2.7 In situ visualization of material rotation and flow -- 2.7.1 Footprint and material rotation -- 2.7.2 Contact state and sticking coefficient -- 2.8 Correlation of the material flow behavior to temperature, force, and torque evolution -- 2.8.1 Influences of the contact state and material flow on heat generation -- 2.8.2 Influences of the contact state and material flow on force and torque -- 2.8.3 Factors governing the contact state and material flow behavior -- 2.9 Summary -- References -- 3 Material flow phenomena -- 3.1 Plasticity and finite deformation theory -- 3.2 Elements of fluid mechanics.
3.3 Previous experimental studies on material flow in friction stir welding -- 3.4 Design of tracer experiments for material flow investigation in additive friction stir deposition -- 3.5 Flow path of the center volume of the feed material -- 3.5.1 Center tracer flow during initial material feeding -- 3.5.2 Center tracer flow during steady-state deposition -- 3.6 Flow path of the edge volume of the feed material -- 3.6.1 Edge tracer flow during initial material feeding -- 3.6.2 Edge tracer flow during steady-state deposition -- 3.7 Material deformation and flow at the interface -- 3.7.1 Surface and interface morphology -- 3.7.2 Interfacial mixing -- 3.8 Summary -- References -- 4 Dynamic microstructure evolution -- 4.1 Elements of microstructure evolution -- 4.2 Dynamic recrystallization mechanisms -- 4.2.1 Discontinuous dynamic recrystallization -- 4.2.2 Continuous dynamic recrystallization -- 4.3 Thermomechanical history in additive friction stir deposition -- 4.3.1 Stage A -- 4.3.2 Stage B -- 4.3.3 Stage C -- 4.4 Characteristics of the resulting microstructures by additive friction stir deposition -- 4.4.1 High stacking fault energy materials: Al and Mg -- 4.4.2 Low (to medium) stacking fault energy materials: Inconel 625 and 316L stainless steel -- 4.5 Dynamic microstructure evolution along the flow path of an Al-Cu alloy -- 4.5.1 Microstructure characterization along the flow path of the center tracer -- 4.5.2 Microstructure characterization along the flow path of the edge tracer -- 4.5.3 Quantification of the overall trend -- 4.6 Processing-microstructure linkages of Al-Mg-Si and Cu -- 4.6.1 Microstructure characterization of Al-Mg-Si printed at various conditions -- 4.6.2 Microstructure characterization of Cu printed at various conditions -- 4.6.3 Analysis of the microstructure evolution mechanisms and trends.
4.6.3.1 Origin of the different microstructure evolution mechanisms -- 4.6.3.2 Origin of the process-microstructure linkage in Al-Mg-Si -- 4.6.3.3 Origin of the process-microstructure linkage in Cu -- 4.6.3.4 Origin of the texture differences -- 4.7 Dynamic phase evolution -- 4.8 Summary -- References -- 5 Effects of tool geometry -- 5.1 A survey of tool effects in friction stir welding -- 5.2 Tool types and geometries for additive friction stir deposition -- 5.3 Effects of tool geometry on interface morphology -- 5.4 Effects of tool geometry on microstructure -- 5.5 Summary -- References -- 6 Beyond metals and alloys: additive friction stir deposition of metal matrix composites -- 6.1 Introduction to metal matrix composites -- 6.2 Current processing approaches to metal matrix composites -- 6.2.1 Bulk processing -- 6.2.1.1 Liquid-state processing: stir casting -- 6.2.1.2 Liquid-state processing: squeeze casting -- 6.2.1.3 Solid-state processing: powder metallurgy -- 6.2.2 Additive production -- 6.2.2.1 Powder bed fusion -- 6.2.2.2 Directed energy deposition -- 6.2.2.3 Sheet lamination -- 6.3 Additive friction stir deposition of metal matrix composites -- 6.3.1 Feeding strategy and printing principle -- 6.3.2 Potential benefits -- 6.4 Examples -- 6.4.1 Cu-ZrO2 printed using a composite feed-rod -- 6.4.2 Al-ZrO2, Al-SiC, and Cu-SiC composites printed by packing particles in the hollow feed-rod -- 6.4.3 Al-SiC printed by auger feeding -- 6.5 Limitations of this printing approach -- 6.5.1 Maximum volume fraction of reinforcement -- 6.5.2 Tool wear -- 6.6 Summary -- References -- 7 Mechanical properties of the printed materials -- 7.1 Elements of the mechanical behavior of materials -- 7.2 Tensile properties of the printed metals and alloys -- 7.2.1 Effects of precipitation strengthening -- 7.2.2 Effects of postprocess aging.
7.2.3 Effects of dislocation content -- 7.2.4 Effects of grain size -- 7.2.5 Two-phase alloys -- 7.2.6 Gradient of the mechanical properties -- 7.3 Fracture behavior -- 7.4 Fatigue behavior -- 7.5 Mechanical properties of bilayer structures -- 7.6 Mechanical properties of printed metal matrix composites -- 7.7 Summary -- References -- 8 Niche applications -- 8.1 Structural repair -- 8.1.1 Through-hole filling -- 8.1.2 Groove filling -- 8.1.3 Surface and divot repair -- 8.1.4 Fastener hole repair -- 8.2 Selective-area cladding on thin automotive sheet metals -- 8.2.1 Cladding quality -- 8.2.2 Thin substrate distortion -- 8.3 Recycling -- 8.3.1 Solid-state metal recycling background -- 8.3.2 Friction stirring for solid-state recycling -- 8.4 Large-scale additive manufacturing -- 8.5 Printing and repair under harsh conditions -- 8.6 Summary -- References -- 9 Future perspectives -- 9.1 In-depth understanding of the underlying physics -- 9.2 Material innovation -- 9.3 Incorporation of artificial intelligence -- 9.4 Summary -- References -- Index -- Back Cover.
Bibliography Includes bibliographical references and index.
Subject Additive manufacturing.
Fabrication additive.
Additive manufacturing
Other Form: Print version: 0128243740 9780128243749 (OCoLC)1286792562
ISBN 0128243953 (electronic book)
9780128243954 (electronic bk.)
0128243740
9780128243749
Standard No. AU@ 000072341866
AU@ 000072393399

 
    
Available items only