Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Record 31 of 33
Previous Record Next Record
E-Book/E-Doc

Title Nanobiomaterials in antimicrobial therapy : applications of nanobiomaterials / edited by Alexandru Mihai Grumezescu.

Imprint Kidlington, Oxford, UK : William Andrew is an imprint of Elsevier, 2016.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource.
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Applications of nanobiomaterials ; volume 6
Applications of nanobiomaterials ; volume 6.
Bibliography Includes bibliographical references and index.
Note Print version record.
Summary Nanobiomaterials in Antimicrobial Therapy presents novel antimicrobial approaches that enable nanotechnology to be used effectively in the treatment of infections. This field has gained a large amount of interest over the last decade, in response to the high resistance of pathogens to antibiotics. Leading researchers from around the world discuss the synthesis routes of nanobiomaterials, characterization, and their applications as antimicrobial agents. The books covers various aspects: mechanisms of toxicity for inorganic nanoparticles against bacteria; the development of excellent carriers for the transport of a high variety of antimicrobials; the use of nanomaterials to facilitate both diagnosis and therapeutic approaches against infectious agents; strategies to control biofilms based on enzymes, biosurfactants, or magnetotactic bacteria; bacterial adhesion onto polymeric surfaces and novel materials; and antimicrobial photodynamic inactivation. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.
Contents Front Cover; Nanobiomaterials in Antimicrobial Therapy; Copyright Page; Contents; List of contributors; Preface of the series; Preface; About the Series (Volumes I-XI); About Volume VI; 1 Antimicrobial photoinactivation with functionalized fullerenes; 1.1 Introduction; 1.2 Photosensitizers; 1.3 Photochemistry of PDT; 1.4 Fullerenes Acting as Photosensitizers; 1.5 Biocompatibility of Fullerenes; 1.6 Chemical Design of Fullerene Derivatives; 1.6.1 Examples of the Synthesis of Mono- and Polycationic Fullerene Derivatives; 1.6.2 Synthesis of Hexa-Anionic Fullerene Derivatives.
1.6.3 Synthesis of Chromophore-Linked Fullerene Derivatives1.7 Photochemical and Photophysical Properties of Fullerenyl Molecular Micelles and Chromophore-Fullerene Conjugates; 1.8 Fullerenes for Antimicrobial Inactivation; 1.9 Conclusions; Acknowledgments; References; 2 Toxicity of inorganic nanoparticles against prokaryotic cells; 2.1 Introduction; 2.2 Inorganic Nanoarchitectonics with Anti-Infective Potential; 2.2.1 Unmodified Nanomaterials with Natural Antimicrobial Activity; 2.2.1.1 Silver nanoparticles; 2.2.1.1.1 Cytotoxicity; 2.2.1.1.2 Clinical studies; 2.2.1.2 Selenium nanoparticles.
2.2.1.2.1 Toxicity2.2.1.3 Copper nanoparticles; 2.2.1.3.1 Cytotoxicity; 2.2.1.4 Titanium dioxide nanoparticles; 2.2.1.4.1 Cytotoxicity; 2.2.1.5 ZnO nanoparticles; 2.2.2 Modified Nanomaterials with Antimicrobial Activity; 2.2.2.1 Phytochemical-Modified Nanomaterials; 2.2.2.2 Peptide- modified nanomaterials; 2.2.2.3 Nanomaterials Modified with Commercial Antibiotics; 2.3 Conclusions and Perspectives; References; 3 Antimicrobial magnetosomes for topical antimicrobial therapy; 3.1 Introduction; 3.1.1 Biosynthesis of Magnetic Particles; 3.1.1.1 Biologically induced mineralization.
3.1.1.2 Biologically controlled biomineralization3.1.1.2.1 Magnetite in eukaryotic microbes; 3.1.1.3 Magnetotactic bacteria; 3.1.1.4 Characteristics and attributes of magnetosomes; 3.1.1.4.1 Attributes of magnetosomes; 3.1.1.5 Steps involved in magnetosome formation; 3.1.1.6 Functionalization of magnetosomes; 3.1.1.7 Biochemical characteristics of magnetosome membrane; 3.1.1.8 Extraction and purification of magnetosomes for antimicrobial activity; 3.1.1.9 Surface modification of magnetosomes; 3.1.1.10 Applications of magnetosomes; 3.1.2 Green Synthesis of Magnetic Nanoparticles.
3.1.2.1 Extracellular synthesis of iron oxide particles3.2 Biofilm Formation; 3.2.1 Characteristics of Biofilm in Medical Devices; 3.2.2 Bacterial Biofilm in Diseases; 3.2.3 Structure of Bacterial Biofilm; 3.2.3.1 Genomics and proteomics of biofilm formation in Gram-negative bacteria; 3.2.3.2 Structure of Gram-negative cell wall; 3.2.4 Candida albicans and Biofilm; 3.2.4.1 Mechanism of drug resistance; 3.2.5 Failure of Antibiotics to Penetrate Biofilm; 3.3 Nanobiomaterials Against Biofilm Formation; 3.3.1 Mechanism of Toxicity of Nanoparticles; 3.3.1.1 Intracellular toxicity.
Subject Anti-infective agents.
Nanostructured materials.
Biomedical materials.
Anti-Infective Agents
Nanostructures -- therapeutic use
Nanostructures
Antiinfectieux.
Nanomatériaux.
Biomatériaux.
MEDICAL -- Pharmacology.
Anti-infective agents
Biomedical materials
Nanostructured materials
Added Author Grumezescu, Alexandru Mihai.
Other Form: Print version: Grumezescu, Alexandru. Nanobiomaterials in Antimicrobial Therapy : Applications of Nanobiomaterials. : Elsevier Science, ©2016 9780323428644
ISBN 0323428878 (electronic bk.)
9780323428873 (electronic bk.)
9780323428644
0323428649
Standard No. AU@ 000061147837
CHBIS 010796220
DEBSZ 482469714
GBVCP 879392487
AU@ 000066076516
AU@ 000066135318
UKMGB 017798443
AU@ 000068133771

 
    
Available items only