Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Advanced functional polymers for biomedical applications / Masoud Mozafari, Narendra Pal Singh Chauhan.

Publication Info. Amsterdam : Elsevier, 2019.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Online resource; title from PDF title page (EBSCO, viewed June 20, 2019)
Summary Advanced Functional Polymers for Biomedical Applications presents novel techniques for the preparation and characterization of functionalized polymers, enabling researchers, scientists and engineers to understand and utilize their enhanced functionality in a range of cutting-edge biomedical applications.
Contents Front Cover -- Advanced Functional Polymers for Biomedical Applications -- Copyright Page -- Contents -- List of contributors -- Foreword -- Preface -- 1 Functional polymers: an introduction in the context of biomedical engineering -- 1.1 Introduction -- 1.2 Tissue engineering -- 1.3 Drug delivery -- 1.4 Gene delivery -- 1.5 Conclusion -- References -- 2 Grafted biopolymers I: methodology and factors affecting grafting -- 2.1 Introduction -- 2.2 Different types of biopolymer -- 2.2.1 Cellulose -- 2.2.2 Starch -- 2.2.3 Pectin -- 2.2.4 Chitosan -- 2.2.5 Carrageenan -- 2.2.6 Dextrin -- 2.2.7 Alginate -- 2.3 Methods of grafting -- 2.3.1 Grafting initiated by chemical method -- 2.3.1.1 Free-radical grafting -- 2.3.1.2 Ionic grafting -- 2.3.1.3 Grafting done with living polymerization -- 2.3.2 Grafting initiated through the radiation method -- 2.3.2.1 Free-radical grafting -- 2.3.2.2 Ionic grafting -- 2.3.2.3 Difference between chemical and radiation method of grafting -- 2.3.3 Photochemical grafting method -- 2.3.4 Enzymatic grafting method -- 2.3.5 Plasma radiation-induced grafting -- 2.4 Factors affecting grafting -- 2.4.1 Nature of backbone -- 2.4.2 Effect of monomer -- 2.4.3 Effects of solvent -- 2.4.4 Effect of initiator -- 2.4.5 Effect of the additives on grafting -- 2.4.6 Effects of temperature -- 2.5 Applications of grafted biopolymer -- 2.5.1 Membrane separation science -- 2.5.2 Conducting polymers -- 2.5.3 Hydrogel -- 2.5.4 Thermoplastic elastomers -- 2.5.5 Bio-medical field -- 2.5.6 Textile field -- 2.6 Conclusion -- References -- 3 Grafted biopolymers II: synthesis and characterization -- 3.1 Introduction -- 3.2 Synthesis and characterization strategies -- 3.2.1 Grafting of acrylonitrile on guar gum -- 3.2.2 Grafting of acrylonitrile on cellulosic material, that is, Dendrocalamus strictus.
3.2.3 UV grafting for removal of dyes using chitosan -- 3.2.4 Grafting of cellulose surface with glycidyl methacrylate and ethylenediamine -- 3.2.5 Use of cellulosic okra polymers for the removal of heavy metal ions -- 3.2.6 Use of polypropylene membrane for the removal of metal ion -- 3.2.7 Grafting of biopolymers onto polypropylene surface -- 3.2.8 Use of graphene oxide nanosheet -- 3.2.9 Synthesis of graphene oxide via mussel inspired coatings/anchors -- 3.3 Applications of grafted functionalized polymers -- 3.3.1 Edible product industry to biomedical applications -- 3.3.2 Applications of functionalized CNTs -- 3.3.3 Grafted polysaccharides in drug delivery -- 3.3.4 Applications of elastin-like polypeptides -- 3.3.5 Biomedical applications of silk-based biomaterials -- 3.3.6 Resilin -- 3.3.7 Use of titin -- 3.3.8 Use of membrane for separation purpose -- 3.4 Conclusion -- References -- 4 Conjugated polymers having semiconducting properties -- 4.1 Introduction -- 4.2 Classification of conducting polymer -- 4.2.1 Ionic conducting polymer -- 4.2.2 Filled polymer -- 4.2.3 Inherently conducting polymer -- 4.2.4 Conducting conjugated polymer -- 4.3 Methods of synthesis -- 4.3.1 Chemical synthesis -- 4.3.2 Electrochemical synthesis -- 4.3.3 Emulsion polymerization -- 4.3.4 Inverse emulsion polymerization -- 4.4 Polyanilne: a felicitous conducting polymer -- 4.5 Advantages of polyaniline -- 4.6 Conducting polymer nanocomposites -- 4.7 Applications -- 4.7.1 Conducting polymers in biomolecular sensing -- 4.8 Graphical representation -- 4.8.1 Drug delivery -- 4.8.2 Conducting polymer as neural probe -- 4.8.3 Conducting polymers as artificial muscle -- 4.9 Conclusion -- References -- Further reading -- 5 Supramolecular metallopolymers -- 5.1 Introduction -- 5.2 Linear supramolecular metallopolymers -- 5.3 Branched supramolecular metallopolymers.
8 Phenolic and epoxy-based copolymers and terpolymers -- 8.1 Introduction -- 8.2 Classification based on composition of polymers -- 8.3 Phenolic-based copolymers -- 8.4 Epoxy-based copolymers -- 8.5 Phenolic-based terpolymer -- 8.6 Epoxy-based terpolymer -- 8.7 Conclusion -- References -- 9 Maleimide and acrylate based functionalized polymers -- 9.1 Introduction -- 9.2 Synthesis, characterization, results, and discussion -- 9.2.1 Functional maleimide-based structural polymers -- 9.2.1.1 Synthesis of monomers -- 9.2.1.2 Characterization -- 9.2.1.3 Characterization -- 9.2.1.4 Synthesis of polymaleimides -- 9.2.1.5 Characterization -- 9.2.2 Synthesis of polymers using dithiomaleimide and dibromomaleimide -- 9.2.2.1 Synthesis of monomers -- 9.2.2.2 Polymerization of fluorescent dithiomaleimide monomers -- 9.2.3 Use of dibromomaleimide as a functional chain transfer agent -- 9.2.3.1 Synthesis -- 9.2.3.2 Characterization -- 9.2.4 Synthesis of terpolymer -- 9.2.4.1 Results and discussion -- 9.2.5 UV curing of bismaleimide polymer -- 9.2.5.1 Preparation of liquid formulation -- 9.2.5.2 UV irradiation -- 9.2.5.3 Characterization -- 9.2.6 Synthesis of n-4-methyl phenyl maleimide -- 9.2.6.1 Synthesis of N-(methyl-phenyl) maleimic acid -- 9.2.6.2 Characterization -- 9.2.6.3 Synthesis of N-(4-methyl-phenyl) maleimide -- 9.2.6.4 Characterization -- 9.2.6.5 Polymerization -- 9.2.6.6 Characterization -- 9.2.6.7 Characterization -- 9.2.7 Synthesis of maleimide-containing acrylate monomer -- 9.2.7.1 Synthesis of furan-protected maleimide-containing acrylate monomer -- 9.2.7.2 Characterization -- 9.2.7.3 Synthesis of catechol chain-end functionalized maleimide -- 9.2.7.4 Characterization -- 9.3 Applications of maleimide and acrylate based functionalized polymers -- 9.3.1 Targeted drug delivery -- 9.3.2 Applications of thermally responsive systems.
9.3.3 Microparticles and nanoparticles -- 9.3.4 Hydrogels -- 9.3.5 Gene therapy and delivery -- 9.3.6 Tissue engineering -- 9.3.7 Bone repair and regeneration -- 9.3.8 Wound dressing and artificial skin -- 9.3.9 Applications of polymer synthesis -- 9.3.10 Applications of imaging -- 9.3.11 Applications of cancer treatment -- 9.3.12 Nonviral gene delivery -- 9.4 Conclusion -- References -- 10 Functional protein to polymer surfaces: an attachment -- 10.1 Introduction -- 10.2 Force and interaction influencing protein attachment -- 10.2.1 Hydrophobic interactions -- 10.2.2 Electrostatic bonding -- 10.2.3 Hydrogen bonding -- 10.2.4 Van der Waals interaction -- 10.2.5 Other factors influencing protein attachment -- 10.2.5.1 Temperature -- 10.2.5.2 Ionic strength -- 10.2.5.3 Multiprotein system -- 10.3 Protein adsorption to polymers -- 10.3.1 Conformation effects -- 10.3.2 Adsorption to the polymer scaffolds -- 10.3.2.1 Chitosan -- 10.4 Functionalization of protein by different methods -- 10.5 Amino acids responsible for protein-polymer attachment -- 10.5.1 Lysine and the N-terminus of the proteins -- 10.5.2 Cysteine -- 10.5.3 Tyrosine -- 10.5.4 Glutamine -- 10.5.5 Tryptophan -- 10.5.6 Histidine -- 10.5.7 Aspartic acid, glutamic acid and C-terminus -- 10.5.8 Arginine -- 10.5.9 Phenylalanine -- 10.5.10 Nonnatural amino acids -- 10.6 Applications of protein-polymer attachment -- 10.6.1 In the field of medicine -- 10.6.2 In the field of protein isolation and separation -- 10.6.3 In the formation of classic amphiphiles or surfactants -- 10.7 Conclusion -- References -- 11 Functionalized photo-responsive polymeric system -- 11.1 Introduction -- 11.2 Photo-induced reactions -- 11.2.1 Photo-isomerization reactions -- 11.2.2 Photo-dimerization -- 11.2.3 Photocleavage -- 11.3 Functionalization of polymer -- 11.3.1 Photo-responsive moiety.
Subject Chemistry, Organic.
Plastics.
Chemistry, Organic
Plastics
Chimie organique.
Matières plastiques.
organic chemistry.
SCIENCE -- Chemistry -- Organic.
Chemistry, Organic
Plastics
Genre/Form Electronic books.
Added Author Mozafari, Masoud, editor.
Chauhan, Naren Pal Singh, editor.
Other Form: Print version : 9780128163498
ISBN 9780128166048 (electronic bk.)
0128166045 (electronic bk.)
9780128163498 (electronic bk.)
0128163496 (electronic bk.)
Standard No. AU@ 000065403635
AU@ 000068475474
AU@ 000068656749
UKMGB 019445469

 
    
Available items only