Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Record 16 of 61
Previous Record Next Record
Electronic Book

Title Handbook of silicon based MEMS materials and technologies / edited by Markku Tilli [and others].

Publication Info. London, UK : William Andrew is an imprint of Elsevier, 2015.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition Second edition.
Description 1 online resource : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Micro & nano technologies
Micro & nano technologies.
Bibliography Includes bibliographical references and index.
Summary The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, manufacturing, processing, system integration, measurement, and materials characterization techniques, sensors, and multi-scale modeling methods of MEMS structures, silicon crystals, and wafers, also covering micromachining technologies in MEMS and encapsulation of MEMS components. Furthermore, it provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques, shows how to protect devices from the environment, and provides tactics to decrease package size for a dramatic reduction in costs.
Note Title details screen (ScienceDirect, viewed September 9, 2015).
Contents Front Cover -- Handbook of Silicon Based MEMS Materials and Technologies -- Copyright Page -- Contents -- List of Contributors -- Preface to the Second Edition -- Overview: Impact of Silicon MEMS-40Years After -- 1 Introduction -- 2 Towards Mass Volumes of Mems Devices -- 2.1 Early Visions -- 2.2 Inkjet Printer Nozzles Create the Industry -- 2.3 Automotive Applications Drive the Reliability and the Quality -- 2.4 Leaps Towards a Generic Manufacturing Platform -- 3 Towards Every Pocket -- 3.1 New Trends -- 3.2 Consumer Products -- 3.2.1 From Wristwatch to Wearable Electronics -- 3.2.2 Cameras, Displays and Projectors -- 3.2.3 Gaming and Virtual Reality -- 3.3 Medical Applications of MEMS Devices -- 4 Mobile Phones, Smart Phones, and Tablets -- 4.1 RF MEMS -- 4.2 Sensors and Actuators -- 4.3 Silicon Microphone -- 4.4 Modular Sensor Architectures -- 5 Ubiquitous Sensing, Computing and Communication -- 5.1 Merged Physical and Digital Worlds -- 5.2 Wireless Sensing and Sensor Networks -- 5.3 Mobile Device as a Sensor -- 6 Future of Mems Technologies -- 6.1 Is Silicon Enough? -- 6.2 Platform for Nanoscience and Nanotechnologies -- 7 Conclusions -- Acknowledgments -- References -- I. Silicon as MEMS Material -- 1 Properties of Silicon -- 1.1 Properties of Silicon -- 1.1.1 Crystallography of Silicon -- 1.1.1.1 Miller Index (hkl) System -- 1.1.1.2 Stereographic Projection -- 1.1.2 Defects in Silicon Lattice -- 1.1.3 Mechanical Properties of Silicon -- 1.1.4 Electrical Properties -- 1.1.4.1 Introduction-Dopants and Impurities in Silicon -- 1.1.4.2 Piezoresistive Effect in Silicon -- 1.1.4.2.1 General Piezoresistive Effect -- 1.1.4.2.2 Strain -- 1.1.4.2.3 Stress in Anisotropic Materials -- 1.1.4.2.4 Strain Effect on Resistivity -- 1.1.4.2.5 Linearity -- 1.1.4.2.6 Effect of Temperature and Doping -- 1.1.4.2.7 Example of a Piezoresistive Sensor Design.
1.1.4.2.8 Surface Effects -- References -- 2 Czochralski Growth of Silicon Crystals -- 2.1 The CZ Crystal-Growing Furnace -- 2.1.1 Crucible -- 2.1.2 HZ Materials -- 2.1.3 HZ Structure -- 2.1.4 Gas Flow -- 2.2 Stages of Growth Process -- 2.2.1 Melting -- 2.2.2 Neck -- 2.2.3 Crown -- 2.2.4 Body -- 2.2.5 Tail -- 2.2.6 Shut-Off -- 2.3 Selected Issues of Crystal Growth -- 2.3.1 Diameter Control -- 2.3.2 Doping -- 2.3.3 HZ Lifetime -- 2.4 Improved Thermal and Gas Flow Designs -- 2.5 Heat Transfer -- 2.6 Melt Convection -- 2.6.1 Free Convection -- 2.6.2 Crucible Rotation -- 2.6.3 Crystal Rotation -- 2.6.4 Marangoni Convection and Gas Shear -- 2.7 Magnetic Fields -- 2.7.1 Cusp Field -- 2.7.2 Transverse Field -- 2.7.3 Time-Dependent Fields -- 2.8 Hot Recharging and Continuous Feed -- 2.8.1 Hot Recharging -- 2.8.2 Charge Topping -- 2.8.3 Crucible Modifications -- 2.8.4 Continuous CZ Growth -- 2.9 Heavily n-Type Doped Silicon and Constitutional Supercooling -- 2.9.1 Constitutional Supercooling -- 2.9.2 Melting Point Depression -- 2.9.3 Origin of Dopant Gradient in the Melt -- 2.9.4 Path to Lower Resistivity -- 2.10 Growth of Large Diameter Crystals -- 2.10.1 Neck Growth for Large Crystals -- 2.10.2 Neck Extension -- 2.10.3 Additional Stresses on Neck -- 2.10.4 Crucible Wall Temperature -- 2.10.5 Double Layered Crucible Structure -- 2.10.6 Crucible Deformations -- 2.10.7 Intentional Devitrification -- 2.10.8 Transverse or Cusp Field for Very Large Crystals -- 2.10.9 Boosting Crystal Weight -- 2.10.10 Seed Chuck -- 2.10.11 Additional Challenges -- References -- Further Reading -- 3 Properties of Silicon Crystals -- 3.1 Dopants and Impurities -- 3.2 Typical Impurity Concentrations -- 3.3 Concentration of Dopants and Impurities in Axial Direction -- 3.4 Resistivity -- 3.5 Radial Variation of Impurities and Resistivity -- 3.6 Thermal Donors.
3.7 Defects in Silicon Crystals -- 3.8 Control of Vacancies, Interstitials, and the OISF Ring -- 3.9 Oxygen Precipitation -- 3.9.1 Oxygen Precipitation and Its Quality Effects -- 3.9.2 Dependence of Precipitation on Oxygen Level and Annealing Process -- 3.9.3 Bulk Microdefects -- 3.9.4 Oxygen Precipitation in Highly-doped Wafers -- 3.9.5 Effect of Precipitation on Lifetime and OISFs -- 3.10 Conclusions -- Acknowledgments -- References -- 4 Silicon Wafers: Preparation and Properties -- 4.1 Silicon Wafer Manufacturing Process -- 4.1.1 Ingot Cutting and Shaping -- 4.1.2 Wafering -- 4.1.2.1 ID Cutting -- 4.1.2.2 Wire Cutting -- 4.1.3 Wafer Marking -- 4.1.4 Edge Grinding -- 4.1.5 Lapping/Grinding -- 4.1.6 Chemical Etching -- 4.1.6.1 Donor Killing -- 4.1.7 Polishing -- 4.1.8 Clean Room Operations -- 4.2 Standard Measurements of Polished Wafers -- 4.2.1 Oxygen and Carbon Concentration -- 4.2.2 Metal Concentration Measurements -- 4.2.3 Resistivity -- 4.2.4 Wafer Geometry -- 4.2.5 Particles -- 4.2.6 Other Measurements -- 4.3 Sample Specifications of MEMS Wafers -- 4.4 Standards of Silicon Wafers -- References -- 5 Epi Wafers: Preparation and Properties -- 5.1 Silicon Epitaxy for MEMS -- 5.2 Silicon Epitaxy-The Basics -- 5.2.1 Surface Preparation -- 5.2.2 Silicon Precursors and Deposition Temperature -- 5.2.3 Choice of Doping Species -- 5.2.4 Choosing an Operating Pressure -- 5.3 The Epi-Poly Process -- 5.4 Etch Stop Layers -- 5.4.1 Heavily Boron Doped Epitaxial Etch Stop Layers -- 5.4.2 Pseudomorphic Epitaxial SiGe Etch Stop Layers -- 5.5 Epi on SOI Substrates -- 5.6 Selective Epitaxy and Epitaxial Layer Overgrowth -- 5.7 Considerations for Chemical Mechanical Polishing -- 5.8 Metrology -- 5.8.1 Measurement of Si Epi Layer Thickness -- 5.8.2 Measurement of Epi Layer Resistivity -- 5.8.3 Measurement of Ge in Si and SiGe Epi Layer Thickness.
5.8.4 Defectivity Measurements -- 5.8.5 Stress Measurements -- 5.9 Commercially Available Epitaxy Systems -- 5.9.1 Single Wafer Systems -- 5.9.2 Batch Systems -- 5.10 Summary -- References -- 6 Thin Films on Silicon -- 6.1 Thin Films on Silicon: Silicon Dioxide -- 6.1.1 Introduction -- 6.1.2 Growth Methods of Silicon Dioxide -- 6.1.2.1 Thermal Oxidation -- 6.1.2.1.1 Thermal Oxidation Processes -- 6.1.2.1.2 Consumption of Si During Oxidation -- 6.1.2.1.3 Dopant Effects -- 6.1.2.1.4 Chlorine Effects -- 6.1.2.1.5 Pressure Effects-HIPOX -- 6.1.2.1.6 Oxidation of Polysilicon -- 6.1.2.1.7 Stress in Silicon Dioxide -- 6.1.2.1.8 Oxidation-Induced Defects in Silicon -- 6.1.2.2 CVD Oxide Growth Methods -- 6.1.2.2.1 CVD Oxides -- 6.1.2.3 Multidimensional Effects -- 6.1.3 Structure and Properties of Silicon Dioxides -- 6.1.4 Processing of Silicon Dioxides -- 6.1.4.1 Cleaning -- 6.1.4.2 Etching -- References -- 6.2 Thin Films on Silicon: Silicon Nitride -- 6.2.1 Introduction -- 6.2.2 Growth of Silicon Nitride -- 6.2.2.1 Low Pressure Chemical Vapor Deposition -- 6.2.2.2 Plasma Enhanced Chemical Vapor Deposition -- 6.2.2.3 Other Methods -- 6.2.3 Structure and Properties of Silicon Nitride -- 6.2.3.1 Stoichiometry -- 6.2.3.2 Stress in Silicon Nitride -- 6.2.3.2.1 Low Stress Silicon Nitride -- 6.2.4 Processing of Silicon Nitride -- 6.2.4.1 Etching -- 6.2.4.1.1 Wet Etching -- 6.2.4.1.2 Dry Etching -- 6.2.4.2 Etch Mask and Etch Stop -- 6.2.4.3 Local Oxidation -- References -- 6.3 Thin Films on Silicon: Poly-SiGe for MEMS-Above-CMOS Applications -- 6.3.1 Introduction -- 6.3.2 Material Properties of Poly-SiGe -- 6.3.3 Poly-SiGe MEMS Manufacturing -- 6.3.3.1 Poly-SiGe Deposition Technology -- 6.3.3.2 Standard Manufacturing Process of a Poly-SiGe MEMS -- 6.3.4 SiGe MEMS Demonstrators -- 6.3.4.1 Pressure Sensors -- 6.3.4.2 Capacitive Micromachined Ultrasound Transducer.
6.3.4.3 Timing Devices -- 6.3.5 Conclusions and Future Poly-SiGe Research -- References -- 6.4 Thin Films on Silicon: ALD -- 6.4.1 Introduction -- 6.4.2 Operation Principles of ALD -- 6.4.3 ALD Processes and Materials -- 6.4.4 Characteristics of ALD Processes and Films -- 6.4.5 ALD Reactors -- 6.4.6 Summary -- References -- Further Reading -- 6.5 Piezoelectric Thin Film Materials for MEMS -- 6.5.1 Introduction -- 6.5.2 Short Introduction to Piezoelectric Theory and Important Thin Film Constants -- 6.5.3 AlN -- 6.5.3.1 Material Properties -- 6.5.3.2 Doped AlN -- 6.5.3.3 Deposition Methods -- 6.5.3.4 Process Integration and Application Areas -- 6.5.4 PZT -- 6.5.4.1 Material Composition -- 6.5.4.2 Choice of Electrode and Seeding -- 6.5.4.3 Deposition Methods -- 6.5.4.3.1 RF-Sputtering -- 6.5.4.3.2 Chemical Solution Deposition -- 6.5.4.3.3 Pulsed Laser Deposition -- 6.5.4.4 Process Integration -- 6.5.4.5 PiezoMEMS Application Areas -- 6.5.5 Other (Future?) Piezoelectric Materials for MEMS -- References -- 6.6 Metallic Glass Thin Films -- 6.6.1 Introduction -- 6.6.1.1 Lithography Issues -- 6.6.1.2 Materials Related Issues -- 6.6.2 Glassy/Amorphous Metals -- 6.6.3 Properties of Metallic Glasses Useful for MEMS -- 6.6.3.1 Superplastic Deformation of Metallic Glasses -- 6.6.3.2 Micro/Nano-Formability of Glassy Metals -- 6.6.4 Applications of Bulk Metallic Glasses in MEMS -- 6.6.5 Metallic Glass Thin Films-Pathway to Integrated MEMS -- 6.6.5.1 Deposition of Metallic Glass Thin Films -- 6.6.5.2 Compatibility with Other Materials -- 6.6.5.3 Effect of Nitrogen and Oxygen Poisoning -- 6.6.5.4 Mechanical Properties -- 6.6.5.5 Chemical Inertness -- 6.6.5.6 Tailorable Magnetic Properties -- 6.6.5.7 Biocompatibility -- 6.6.5.8 Micro/Nano-Fabrication Ability -- 6.6.5.9 3D Micro-Forming -- 6.6.6 Application of Metallic Glass Thin Films -- 6.6.6.1 Hydrogen Sensor.
Subject Microelectromechanical systems.
Microelectromechanical systems -- Materials.
Silicon -- Electric properties.
Micro-Electrical-Mechanical Systems
Microsystèmes électromécaniques.
Microsystèmes électromécaniques -- Matériaux.
TECHNOLOGY & ENGINEERING -- Mechanical.
Microelectromechanical systems
Microelectromechanical systems -- Materials
Silicon -- Electric properties
Genre/Form Electronic book.
Added Author Tilli, Markku, editor.
Other Form: Print version: Handbook of silicon based MEMS materials and technologies. Second edition. Amsterdam, [Netherlands] : William Andrew, ©2015 xxxvii, 787 pages Micro & nano technologies. 9780323299657
ISBN 9780323312233 (electronic bk.)
0323312233 (electronic bk.)
0323299652
9780323299657
9780323299657
Standard No. AU@ 000056988558
AU@ 000062548021
CHBIS 010528059
CHVBK 354096818
DEBSZ 45152912X
DEBSZ 482376406

 
    
Available items only