Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Record 13 of 22
Previous Record Next Record
E-Book/E-Doc

Title Machine learning for future fiber-optic communication systems / edited by Alan Pak Tao Lau and Faisal Nadeem Khan.

Publication Info. London, United Kingdom ; San Diego, CA : Elsevier Academic Press, [2022]

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Contents Front Cover -- Machine Learning for Future Fiber-Optic Communication Systems -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- 1 Introduction to machine learning techniques: An optical communication's perspective -- 1.1 Introduction -- 1.2 Supervised learning -- 1.2.1 Artificial neural networks (ANNs) -- 1.2.2 Choice of activation functions -- 1.2.3 Choice of loss functions -- 1.2.4 Support vector machines (SVMs) -- 1.2.5 K-nearest neighbors (KNN) -- 1.3 Unsupervised learning -- 1.3.1 K-means clustering -- 1.3.2 Expectation-maximization (EM) algorithm -- 1.3.3 Principal component analysis (PCA) -- 1.3.4 Independent component analysis (ICA) -- 1.4 Reinforcement learning (RL) -- 1.5 Deep learning techniques -- 1.5.1 Deep learning vs. conventional machine learning -- 1.5.2 Deep neural networks (DNNs) -- 1.5.3 Convolutional neural networks (CNNs) -- 1.5.4 Recurrent neural networks (RNNs) -- 1.5.5 Generative adversarial networks (GANs) -- 1.6 Future role of ML in optical communications -- 1.7 Online resources for ML algorithms -- 1.8 Conclusions -- 1.A -- References -- 2 Machine learning for long-haul optical systems -- 2.1 Introduction -- 2.2 Application of machine learning in perturbation-based nonlinearity compensation -- 2.2.1 Wide & -- deep neural network -- 2.2.2 Data collection and pre-processing -- 2.2.3 Training results -- 2.2.4 Results and discussion -- 2.3 Application of machine learning in digital backpropagation -- 2.3.1 Physics-based machine-learning models -- 2.3.2 Single-polarization systems -- 2.3.3 Dual-polarization systems -- 2.3.4 Subband processing via filter banks -- 2.3.5 Training and application examples -- 2.4 Outlook of machine learning in long-haul systems -- References -- 3 Machine learning for short reach optical fiber systems -- 3.1 Introduction to optical systems for short reach.
3.2 Deep learning approaches for digital signal processing -- 3.3 Optical IM/DD systems based on deep learning -- 3.3.1 ANN receiver -- 3.3.1.1 PAM transmission -- 3.3.1.2 Sliding window FFNN processing -- 3.3.2 Auto-encoders -- 3.3.2.1 Auto-encoder design based on a feed-forward neural network -- 3.3.2.2 Auto-encoder design based on a recurrent neural network -- 3.3.3 Performance -- 3.3.4 Distance-agnostic transceiver -- 3.4 Implementation on a transmission link -- 3.4.1 Conventional PAM transmission with ANN-based receiver -- 3.4.2 Auto-encoder implementation -- 3.5 Outlook -- References -- 4 Machine learning techniques for passive optical networks -- 4.1 Background -- 4.2 The validation of NN effectiveness -- 4.3 NN for nonlinear equalization -- 4.4 End to end deep learning for optimal equalization -- 4.5 FPGA implementation of NN equalizer -- 4.6 Conclusions and perspectives -- References -- 5 End-to-end learning for fiber-optic communication systems -- 5.1 Introduction -- 5.2 End-to-end learning -- 5.3 End-to-end learning for fiber-optic communication systems -- 5.3.1 Direct detection -- 5.3.2 Coherent systems -- 5.3.2.1 Nonlinear phase noise channel -- 5.3.2.2 Perturbation models (NLIN and GN) -- 5.3.2.3 Split-step Fourier method (SSFM) -- 5.4 Gradient-free end-to-end learning -- 5.5 Conclusion -- Acknowledgments -- References -- 6 Deep learning techniques for optical monitoring -- 6.1 Introduction -- 6.2 Building blocks of deep learning-based optical monitors -- 6.2.1 Digital coherent reception as a data-acquisition method -- 6.2.2 Deep learning and representation learning -- 6.2.3 Combination of digital coherent reception and deep learning -- 6.3 Deep learning-based optical monitors -- 6.3.1 Training mode of DL-based optical monitors -- 6.3.2 Advanced topics for the training mode of DL-based optical monitors.
6.3.2.1 Data augmentation based on domain knowledge of optical communication -- 6.3.2.1.1 Data augmentation on polarization state -- 6.3.2.1.2 Data augmentation on the frequency offset -- 6.3.2.2 Transfer learning for adaptation of DNNs -- 6.3.2.3 Federated learning for collaborative DNN training over multiple operators -- 6.3.3 Inference mode of DL-based optical monitors -- 6.3.4 Advanced topics for inference modes of DL-based optical monitors -- 6.3.4.1 Cloud-based vs. edge-based implementations -- 6.3.4.1.1 Cloud-based implementation of inference mode -- 6.3.4.1.2 Edge-based implementation of inference mode -- 6.3.4.2 Estimating the model uncertainty in inference mode -- 6.4 Tips for designing DNNs for DL-based optical monitoring -- 6.4.1 Shallow vs. deep network -- 6.4.2 DNN architecture for optical monitoring -- 6.4.2.1 Fully-connected DNNs -- 6.4.2.2 Convolutional neural networks -- 6.4.2.3 DNN architecture for the optical monitoring -- 6.5 Experimental verifications -- 6.5.1 Experimental setup for data collection -- 6.5.2 Neural network architecture for OSNR estimation task -- 6.5.2.1 DNN used in this experiment -- DNN #1 (FC-DNN): -- DNN #2 (CNN-1): -- 6.5.2.2 Results and discussion -- 6.5.3 Detailed experimental evaluation of CNN-based OSNR estimators -- 6.5.3.1 DNN used in this section -- DNN #3 (CNN-2): -- 6.5.3.2 Results and discussion -- 6.5.4 Versatile monitoring using DNN -- 6.5.4.1 DNN architecture used in this experiment -- DNN #4 (CNN-3): -- 6.5.4.2 Results and discussion -- 6.5.5 Data augmentation based on domain knowledge of optical transceivers -- 6.5.5.1 DNN used in this section -- DNN #5 (CNN-4): -- 6.5.5.2 Results and discussion -- 6.5.6 Estimating uncertainty by dropout at inference -- 6.5.6.1 DNN used in this experiment -- DNN #6 (CNN-5): -- 6.5.6.2 Results and discussion.
6.6 Future direction of data-analytic-based optical monitoring -- 6.7 Summary -- Acknowledgment -- References -- 7 Machine Learning methods for Quality-of-Transmission estimation -- 7.1 Introduction -- 7.2 Classification and regression models for QoT estimation -- 7.2.1 Classification approaches for QoT estimation -- 7.2.1.1 Performance evaluation metrics -- ML classification -- 7.2.1.2 Illustrative description of a classifier for QoT estimation -- 7.2.2 Regression approaches for QoT estimation -- 7.2.2.1 Regression models for QoT estimation -- 7.3 Active and transfer learning approaches for QoT estimation -- 7.3.1 Active learning -- 7.3.1.1 Gaussian Processes for QoT estimation -- 7.3.2 Transfer learning -- 7.3.2.1 Domain adaptation techniques -- 7.3.3 When to apply AL/DA during network lifecycle -- 7.4 On the integration of ML in optimization tools -- 7.4.1 RMSA integrating ML-based QoT estimation in EONs -- 7.4.1.1 Integrated network planning framework -- 7.5 Illustrative numerical results -- 7.5.1 Data generation -- 7.5.2 Classification -- 7.5.3 Regression -- 7.5.4 Active learning and transfer learning -- 7.6 Future research directions and challenges -- 7.7 Conclusion -- References -- 8 Machine Learning for optical spectrum analysis -- 8.1 Introduction -- 8.1.1 Failure detection and localization -- 8.1.2 Optical spectrum -- 8.1.3 Failures affecting the optical spectrum -- 8.2 Feature-based spectrum monitoring -- 8.2.1 Motivation and objectives -- 8.2.2 OSA for soft-failure detection and identification -- 8.2.2.1 Soft-failure detection, identification, and localization -- 8.2.2.2 Options for classification using FeX -- Multi-classifier approach -- Single-classifier approach -- Feature transformation for single-classifier approach -- 8.2.3 Soft-failure localization -- 8.2.4 Illustrative results -- 8.2.4.1 VPI set-up for data collection.
8.2.4.2 ML-based classification comparison -- 8.2.4.3 Benefits of using a single OSA -- 8.2.4.4 Benefits of feature transformation for classification -- 8.2.4.5 Failure localization -- 8.2.5 Conclusions -- 8.3 Residual-based spectrum monitoring -- 8.3.1 Residual-based approach for optical spectrum analysis -- 8.3.2 Facilitating ML algorithm deployment using residual signals -- 8.3.3 Illustrative results -- 8.3.3.1 Comparison of residual-based and feature-based approaches -- 8.3.3.2 The efficiency of residual adaptation mechanism -- 8.3.4 Conclusions -- 8.4 Monitoring of filterless optical networks -- 8.4.1 Motivation of optical monitoring in FONs -- 8.4.2 Signal identification and classification -- 8.4.3 Optical signal tracking -- 8.4.3.1 Feature-based tracking -- Individual feature -- Super features -- 8.4.3.2 Residual-based tracking -- 8.4.4 Illustrative results -- 8.4.4.1 PAM4 scenario -- 8.4.4.2 QPSK scenario -- 8.4.5 Conclusions -- 8.5 Concluding remarks and future work -- List of acronyms -- References -- 9 Machine learning and data science for low-margin optical networks -- 9.1 The shape of networks to come -- 9.2 Current QoT margin taxonomy and design -- 9.3 Generalization of optical network margins -- 9.3.1 Optimal spectral efficiency -- 9.3.2 Field margins -- 9.3.3 Uncertainty margins -- 9.3.4 Unallocated and implementation margins -- 9.3.5 Protection margins -- 9.3.6 Total spectral efficiency margin and QoT margin equivalency -- 9.4 Large scale assessment of margins and their time variations in a deployed network -- 9.4.1 Assessing the quality of transmission -- 9.4.2 Description of the dataset -- 9.4.3 Example of SNR variations in time -- 9.4.4 Distributions of the minimal, maximal and median margins for all connections in the dataset -- 9.4.5 System margins and long term performance variations.
Subject Optical fiber communication.
Machine learning.
Télécommunications par fibres optiques.
Apprentissage automatique.
Machine learning
Optical fiber communication
Added Author Lau, Alan Pak Tao.
Kham, Faisal Nadeem.
Other Form: Print version: 0323852270 9780323852272 (OCoLC)1281239375
ISBN 9780323852289 electronic book
0323852289 electronic book
9780323852272
0323852270
Standard No. AU@ 000071341249
AU@ 000074353259

 
    
Available items only