Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Lead-acid batteries for future automobiles / edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand.

Imprint Amsterdam : Elsevier, 2017.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Print version record.
Contents Front Cover; Lead -- Acid Batteries for FutureAutomobiles; Lead-Acid Batteries for Future Automobiles; Copyright; Contents; List of Contributors; About the Editors; Preface; Abbreviations; 1 -- Overview; 1 -- Development trends for future automobiles and their demand on the battery; 1.1 Lead-acid batteries in automobiles: still good enough?; 1.2 Requirements in the automotive industry; 1.2.1 Requirements cascade and V-Model; 1.2.2 Robustness and reliability; 1.2.3 Materials, environmental, recycling; 1.3 Vehicle level requirements; 1.3.1 Power-supply system functions.
1.3.2 Drivetrain electrification functions1.4 Low-volt system topology options for advanced power supply and mild powertrain hybridization; 1.4.1 12-V single voltage single battery; 1.4.2 12-V dual (or multi) storage devices; 1.4.3 12-V+48-V dual voltage, dual-storage devices; 1.4.4 12-V+high voltage hybrid traction; 1.5 Upcoming storage system requirements; 1.5.1 Usable versus rated capacity; 1.5.2 Discharge power performance; 1.5.3 Shallow-cycle-life; service life in partial state-of-charge operation; 1.5.4 Dynamic charge-acceptance; 1.5.5 Battery monitoring and management.
1.5.6 Package and ambient conditions, weight1.6 Discussion; List of abbreviations; References; 2 -- Overview of batteries for future automobiles; 2.1 General requirements for batteries in electric vehicles; 2.2 Energy storage in lead-acid batteries; 2.3 Alkaline batteries; 2.3.1 Nickel-cadmium batteries; 2.3.1.1 Automotive applications; 2.3.1.2 Cell chemistry; Discharge processes; Thermodynamic data; 2.3.1.3 Nickel electrode; 2.3.1.4 Cadmium electrode; 2.3.1.5 Open nickel-cadmium cells; 2.3.1.6 Gas-tight nickel-cadmium cell; 2.3.1.7 Operating behaviour and heat management; Charging methods.
2.3.2 Nickel-metal-hydride batteries (NiMH)2.3.2.1 Automotive applications; 2.3.2.2 Cell chemistry; Discharge processes; 2.3.2.3 Negative metal-hydride electrode; 2.3.2.4 Operating behaviour and heat management; 2.3.2.5 Cell design; 2.3.3 Nickel-zinc batteries; 2.3.3.1 Automotive applications; 2.3.3.2 Cell chemistry; Discharge reaction; Charge reaction; 2.4 High-temperature sodium batteries; 2.4.1 Automotive applications; 2.4.2 Sodium-nickel chloride battery (ZEBRA); 2.4.2.1 Cell chemistry; Discharge reactions; 2.4.2.2 Operating behaviour; 2.4.3 Sodium-sulfur battery.
2.5 Lithium-ion batteries2.5.1 Automotive applications; 2.5.1.1 Battery electric vehicles; 2.5.1.2 Stop-start vehicles/micro-/mild-hybrid electric vehicles; 2.5.1.3 Challenges; Low temperature behaviour; High-temperature behaviour; Safety; Costs; 2.5.2 Cell chemistry; 2.5.3 Negative electrode materials (discharge: anodes); 2.5.3.1 Graphite; 2.5.3.2 Lithium titanate (LTO); 2.5.3.3 Lithium alloys; 2.5.4 Positive electrode materials (discharge: cathodes); 2.5.4.1 Lithium cobalt oxide (LCO); 2.5.4.2 Lithium nickel oxides (LNO and NCA).
Summary Annotation Lead-Acid Batteries for Future Automobiles provides an overview on the innovations that were recently introduced in automotive lead-acid batteries and other aspects of current research. Innovative concepts are presented, some of which aim to make lead-acid technology a candidate for higher levels of powertrain hybridization, namely 48-volt mild or high-volt full hybrids. Lead-acid batteries continue to dominate the market as storage devices for automotive starting and power supply systems, but are facing competition from alternative storage technologies and being challenged by new application requirements, particularly related to new electric vehicle functions and powertrain electrification. Presents an overview of development trends for future automobiles and the demands that they place on the batteryDescribes how to adapt LABs for use in micro and mild hybrid EVs via collector construction and materials, via carbon additives, via new cell construction (bipolar), and via LAB hybrids with Li-ion and supercap systemsSystem integration of LABs into vehicle power-supply and hybridization conceptsShort description of competitive battery technologies.
Bibliography Includes bibliographical references and index.
Subject Automobiles -- Batteries.
Automobiles -- Batteries.
TECHNOLOGY & ENGINEERING -- Engineering (General)
Automobiles -- Batteries
Added Author Garche, Jürgen.
Karden, Eckhard, editor.
Moseley, Patrick T., editor.
Rand, D. A. J. (David Anthony James), 1942- editor.
Other Form: Print version: Lead-acid batteries for future automobiles. Amsterdam : Elsevier, 2017 0444637001 9780444637000 (OCoLC)959875612
ISBN 0444637036 (electronic bk.)
9780444637031 (electronic bk.)
9780444637000
0444637001
Standard No. AU@ 000059667772
AU@ 000066136144
CHBIS 011069402
CHNEW 001014145
CHVBK 499774639
UKMGB 018230136
AU@ 000068133334

 
    
Available items only