Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Lamon, Jacques.

Uniform Title Brittle fracture and damage of brittle materials and composites (Online)
Title Brittle fracture and damage of brittle materials and composites : statistical-probabilistic approaches / Jacques Lamon.

Imprint London, UK : ISTE Press Ltd ; Kidlington, Oxford, UK : Elsevier Ltd, 2016.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (xiv, 282 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references (pages 269-280) and index.
Contents Front Cover -- Dedication -- Brittle Fracture and Damage of Brittle Materials and Composites: Statistical-Probabilistic Approaches -- Copyright -- Contents -- Introduction -- Chapter 1: Flaws in Materials -- 1.1. Introduction -- 1.2. The theoretical strength and the intrinsic strength of materials -- 1.3. The fracture strength of materials -- 1.4. The flaws -- 1.5. Severity of individual flaws -- 1.6. Influence of flaw populations -- 1.7. Consequences of failure predictions -- Chapter 2: Statistical-Probabilistic Approaches to Brittle Fracture: The Weibull Model -- 2.1. Introduction -- 2.2. Weibull statistical model -- 2.3. Probability of fracture for a uniaxial non-uniform tensile stress field -- 2.4. Probability of fracture from the surface of specimens -- 2.5. Weibull multiaxial analysis -- 2.6. Multiaxial approach based on the principle of independent action of stresses -- 2.7. Summary on the Weibull statistical model -- Chapter 3: Statistical-Probabilistic Theories Based on Flaw Size Density -- 3.1. Introduction -- 3.2. Failure probability -- 3.3. Expressions for flaw size density and distribution -- 3.4. Introduction of stress state -- 3.5. Models -- 3.6. Limits of the flaw size density-based approaches -- Chapter 4: Statistical-Probabilistic Theories Based on Flaw Strength Density -- 4.1. Introduction -- 4.2. Basic equations of failure probability in the elemental strength approach -- 4.3. Elemental strength model for a uniform uniaxial stress state: Argon-McClintock development -- 4.4. The Batdorf model -- 4.5. The multiaxial elemental strength model -- Chapter 5: Effective Volume or Surface Area -- 5.1. Introduction -- 5.2. The Weibull model: the effective volume for a uniaxial stress state -- 5.3. The multiaxial elemental strength model: the effective volume for a multiaxial stress state.
5.4. Analytic expressions for failure probability, effective volume or surface area (Weibull theory) -- 5.5. Some remarkable exact expressions for failure probability, effective volume or surface area (multiaxial elemental strength theory) -- 5.5. Conclusion -- Chapter 6: Size and Stress-state Effects on Fracture Strength -- 6.1. Introduction -- 6.2. Uniform uniaxial stress state -- 6.3. Non-uniform uniaxial stress state -- 6.4. Multiaxial stress state: multiaxial elemental strength model -- 6.5. Applications -- 6.6. Conclusion -- Chapter 7: Determination of Statistical Parameters -- 7.1. Introduction -- 7.2. Methods of determination of statistical parameters -- 7.3. Production of empirical data -- 7.4. Bias and variability -- 7.5. Effect of the presence of multimodal flaw populations -- 7.6. Fractographic analysis and flaw populations -- 7.7. Examples -- Chapter 8: Computation of Failure Probability: Application to Component Design -- 8.1. Introduction -- 8.2. Computer programs for failure predictions -- 8.3. The CERAM computer program -- 8.4. Validation of the CERAM computer code -- 8.5. CERAM-based ceramic design -- 8.6. Relation test specimen/component: identification of allowable material properties -- 8.7. Determination of statistical parameters using CERAM -- 8.8. Application to multimaterials and composite materials -- 8.9. Conclusion -- Chapter 9: Case Studies: Comparison of Failure Predictions Using the Weibull and Multiaxial Elemental Strength Models -- 9.1. Introduction -- 9.2. Predictions of failure under flexural load -- 9.3. Prediction of thermal shock failure -- 9.4. Conclusion -- Chapter 10: Application of Statistical-Probabilistic Approaches to Damage and Fracture of Composite Materials and Structures -- 10.1. Introduction -- 10.2. Damage mode by successive cracking in continuous fiber reinforced composites.
10.3. Flaw populations involved in damage and pertinent flaw strength density functions -- 10.4. Matrix fragmentation: series system model -- 10.5. Approach based on Poisson process -- 10.6. The Monte Carlo simulation method -- 10.7. The fragment dichotomy-based model (parallel system) -- 10.8. Evaluation of models: comparison to experimental data -- 10.9. Ultimate failure of unidirectionnally reinforced composite (Weibull model, uniform tension) in the presence of matrix dama -- 10.10. Application to composites: unified model -- 10.11. Conclusion -- Bibliography -- Index -- Back Cover.
Subject Fracture mechanics -- Mathematical models.
Brittleness.
Mécanique de la rupture -- Modèles mathématiques.
Fragilité.
brittleness.
Brittleness
Fracture mechanics -- Mathematical models
Added Author Elsevier.
ISBN 9781785481215
1785481215
Standard No. AU@ 000067130739

 
    
Available items only