Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Thermo-economic approach to energy from waste / Anand Ramanathan [and more].

Publication Info. Amsterdam : Elsevier, [2022]

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Contents Front Cover -- A Thermo-Economic Approach to Energy From Waste -- Copyright Page -- Contents -- About the authors -- Preface -- Acronyms and abbreviations -- 1 Pyrolysis of waste biomass: toward sustainable development -- 1.1 Introduction -- 1.2 Component of lignocellulosic biomasses -- 1.2.1 Cellulose -- 1.2.2 Hemicellulose -- 1.2.3 Lignin -- 1.2.4 Ash -- 1.2.5 Extractives -- 1.3 Types of pyrolysis -- 1.3.1 Slow pyrolysis -- 1.3.2 Intermediate pyrolysis -- 1.3.3 Fast pyrolysis -- 1.4 Mechanism of pyrolysis -- 1.4.1 Mechanism of cellulose pyrolysis -- 1.4.2 Mechanism of hemicellulose pyrolysis -- 1.4.3 Mechanism of lignin pyrolysis -- 1.5 Reactor configurations -- 1.5.1 Fluidized-bed reactor -- 1.5.2 Circulating fluidized-bed reactor -- 1.5.3 Ablative plate reactor -- 1.5.4 Auger/screw reactor -- 1.5.5 Rotating cone reactor -- 1.5.6 Cyclone/vortex reactor -- 1.6 Upgradation techniques for pyrolyzed bio-oil -- 1.6.1 Physical upgradation of crude bio-oil -- 1.6.1.1 Hot vapor filtration -- 1.6.1.2 Emulsification -- 1.6.1.3 Solvent addition -- 1.6.2 Chemical upgradation of bio-oil -- 1.6.2.1 Aqueous phase processing/reforming -- 1.6.2.2 Mild Cracking -- 1.6.2.3 Esterification -- 1.6.3 Catalytical upgradation of bio-oil -- 1.6.3.1 Hydrotreating -- 1.6.3.2 Catalytic cracking -- 1.6.3.3 Hydrodeoxygenation -- 1.6.3.4 Steam reforming -- 1.6.3.5 Supercritical fluids -- 1.7 Energy recovery for heating or process applications -- 1.8 Conclusion -- References -- 2 Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling -- 2.1 Introduction -- 2.2 Current Indian scenario of waste-to-energy conversion technologies -- 2.3 From biomass to biofuel through pyrolysis -- 2.4 Life cycle assessment methodology for pyrolysis-based bio-oil production -- 2.4.1 Steps followed for studying LCA -- 2.4.2 Setting require for LCA.
2.4.3 Inventory data collection -- 2.4.4 Analysis of life cycle inventory -- 2.4.5 Impact assessment of LCA -- 2.4.6 Sensitivity analysis -- 2.5 Aspen plus approach to biomass pyrolysis system -- 2.6 Kinetics of biomass pyrolysis -- 2.7 Isoconversional techniques -- 2.8 Other kinetic models -- 2.9 Application of biomass pyrolysis products -- 2.9.1 Bio-oil applications -- 2.9.1.1 Biochemicals -- 2.9.1.2 Biofuel -- 2.9.1.3 Biopolymer -- 2.9.2 Biochar application -- 2.9.2.1 Soil amendment -- 2.9.2.2 Solid biofuel -- 2.9.2.3 Activated carbon -- 2.10 Conclusions -- References -- 3 Biomass gasification integrated with Fischer-Tropsch reactor: techno-economic approach -- 3.1 Introduction -- 3.2 Surplus biomass available in India -- 3.2.1 Conflicting applications for crop residue biomass -- 3.2.2 Biomass -- 3.2.3 Challenges in biomass utilization -- 3.2.4 Biomass to energy conversion processes -- 3.3 Pretreatment of biomass -- 3.3.1 Torrefaction -- 3.3.1.1 Changes pertaining to that structure -- 3.3.1.2 Physiochemical properties -- 3.3.1.3 Moisture content -- 3.3.2 Types of pretreatment -- 3.3.2.1 Physical pretreatment -- 3.3.2.2 Mechanical methods -- 3.3.2.3 Biological pretreatment -- 3.3.2.4 Enzymatic pretreatment -- 3.3.2.5 Microbial and fungus prevention pretreatment -- 3.3.2.6 Other latest pretreatment -- 3.4 Kinetics of biomass gasification for syngas generation -- 3.4.1 Gasification mechanism -- 3.4.1.1 Drying zone or bunker section -- 3.4.1.2 Pyrolysis or thermal decomposition zone -- 3.4.1.3 Partial oxidation or combustion zone -- 3.4.1.4 Reduction zone -- 3.4.2 Syngas conditioning -- 3.5 Gasification integrated with Fischer-Tropsch reactor -- 3.5.1 Bioenergy potential calculations and estimation -- 3.5.2 Fischer-Tropsch synthesis -- 3.5.3 Fischer-Tropsch catalysts -- 3.5.4 Fischer-Tropsch mechanism.
3.5.5 Biofuel synthesis from Fischer-Tropsch reactor -- 3.5.5.1 Slurry bubble column reactors -- 3.6 Techno-economic analysis of Fischer-Tropsch reactor with biomass gasification -- 3.7 Conclusion -- References -- 4 Energy recovery from biomass through gasification technology -- 4.1 Introduction -- 4.2 Thermochemical conversion -- 4.2.1 Combustion -- 4.2.2 Pyrolysis -- 4.2.3 Gasification -- 4.2.4 Principles of anaerobic digestion -- 4.3 Production and use of aquatic biomass -- 4.3.1 Potential of biomass waste -- 4.4 Lignocellulose biomass pretreatment -- 4.4.1 Physical methods -- 4.4.2 Chemical Methods -- 4.4.3 Biological pretreatment -- 4.5 Bioconversion and downstream processing of biomass-derived molecules' conversion to chemicals -- 4.6 Energy recovery for heating or process applications -- 4.6.1 Steam cycle -- 4.6.2 Engine -- 4.6.3 Gas turbine -- 4.6.4 Biogas -- 4.7 Conversion of lignocellulosic biomass-derived intermediates lignin biorefinery biogas from waste biomass -- 4.7.1 Hydrolysis -- 4.7.2 Acidogenesis -- 4.7.3 Acetogenesis -- 4.7.4 Methanogenesis -- 4.8 Parameters affecting anaerobic digestion process -- 4.8.1 Temperature -- 4.8.2 Solid to water content -- 4.8.3 pH level -- 4.8.4 Retention period -- 4.8.5 Organic loading rate -- 4.8.6 C/N ratio -- 4.9 The concept of gasification and its types of reactors -- 4.9.1 Fixed bed gasification -- 4.9.2 Updraft gasifier -- 4.9.3 Downdraft gasifier -- 4.9.4 Cross-flow gasifier -- 4.9.5 Fluidized bed gasification -- 4.9.6 Bubbling fluidized bed gasification -- 4.10 Life cycle analysis of gasification process -- 4.10.1 Scope of analysis and definition -- 4.10.2 Boundary system and analysis of related legislation -- 4.10.3 Proper selection of environmental performance indicators -- 4.10.4 Inventory analysis -- 4.10.5 Environmental impact assessment -- 4.10.6 Life cycle assessment.
4.11 Aspen plus approach to the biomass gasification system -- 4.12 Conclusion -- References -- 5 Life Cycle Assessment applied to waste-to-energy technologies -- 5.1 Introduction -- 5.2 What is life cycle assessment? -- 5.2.1 Historical development -- 5.2.2 Applications of LCA -- 5.2.3 Steps and procedures for an LCA study -- 5.2.4 Definition of the objective and scope -- 5.2.5 Analysis of the life cycle inventory -- 5.2.6 Life cycle impact assessment -- 5.2.7 Interpretation -- 5.3 Use of LCA to analyze waste-to-energy technologies -- 5.3.1 Main applications -- 5.4 Highlights in LCA studies for waste-to-energy technologies -- 5.4.1 Functional unit -- 5.4.2 Type of residue -- 5.4.3 Form of energy use -- 5.4.4 Energy recovery -- 5.4.5 Sensitivity and uncertainty analyses -- 5.5 Main results found in the literature -- 5.6 Conclusion -- References -- 6 Waste disposal in selected favelas (slums) of Rio de Janeiro -- 6.1 Historical background -- 6.1.1 Some numbers about subnormal clusters -- 6.1.2 The favela of Catumbi -- 6.2 Survey and study of solid waste in 37 slums and in Catumbi -- 6.3 Final considerations -- References -- 7 Transesterification process of biodiesel production from nonedible vegetable oil sources using catalysts from waste sources -- 7.1 Introduction -- 7.2 Biodiesel production as an alternative source of energy -- 7.3 Transesterification: reaction and mechanism -- 7.4 Catalysts -- 7.4.1 Chemical catalysts -- 7.4.1.1 Homogeneous catalysts -- 7.4.1.2 Heterogeneous catalysts -- 7.4.1.3 Preparation of natural derived heterogeneous catalyst -- 7.4.1.4 Nanocatalysts -- 7.4.2 Biochemical catalysts -- 7.4.3 Impact on kinetics of transesterification and modeling -- 7.4.3.1 Determination of kinetic parameters in a batch process -- 7.4.3.2 Modeling of batch reactor design -- 7.4.3.3 Modeling for continuous reactor design.
7.5 Hydrocarbon feed stocks for biodiesel -- 7.5.1 Edible oils -- 7.5.2 Nonedible oils -- 7.6 Various novel technologies for biodiesel production -- 7.6.1 Ultrasonic-assisted biodiesel production -- 7.6.2 Micro reactive transesterification -- 7.6.3 Microwave-assisted biodiesel production -- 7.6.4 Reactive distilled transesterification -- 7.6.5 Supercritical technology of biodiesel production (noncatalytic) -- 7.7 Techno-economic analysis of biodiesel production -- 7.7.1 One-time costs -- 7.7.2 Raw material and operating cost -- 7.7.3 Fixed cost and maintenance cost -- 7.7.4 Cost calculation with respect to production rate -- 7.8 Perspectives and conclusion -- References -- Index -- Back Cover.
Subject Waste products as fuel -- Economic aspects.
Thermochemistry.
Energy conversion -- Economic aspects.
Déchets (Combustible) -- Aspect économique.
Thermochimie.
Énergie -- Conversion -- Aspect économique.
Thermochemistry
Waste products as fuel -- Economic aspects
Added Author Ramanathan, Anand.
Other Form: Print version: 0128243570 9780128243572 (OCoLC)1245656654
Print version: THERMO-ECONOMIC APPROACH TO ENERGY FROM WASTE. [S.l.] : ELSEVIER, 2021 0128243570 (OCoLC)1245656654
ISBN 9780323859110 (electronic book)
0323859119 (electronic book)
9780128243572
Standard No. AU@ 000070156324
UKMGB 020389788
AU@ 000074361419

 
    
Available items only