Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Print Material
Author Rippy, Kerry, author.

Title Electrochemical mitigation of corrosion in molten chloride salts during CSP plant operation / Kerry Rippy.

Publication Info. [Golden, Colo.] : National Renewable Energy Laboratory, 2021.

Copies

Description 1 online resource (9 pages) : color illustrations.
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series NREL/PR ; 5500-80080
NREL/PR ; 5500-80080.
Note Slideshow presentation.
In scope of the U.S. Government Publishing Office Cataloging and Indexing Program (C&I) and Federal Depository Library Program (FDLP).
"ES2021, virtual, online; June 16-18, 2021."
Funding DE-AC36-08GO28308
Note Description based on online resource; title from PDF title page (NREL, viewed October 25, 2022).
Summary We are designing an electrochemical flow-cell for removal of corrosive impurities from molten chloride salt Gen3 Concentrating Solar Power (CSP) plants during plant operation. Corrosive impurities will inevitably form in molten chloride salts upon exposure to air and moisture. We previously showed that even small amounts of these impurities, especially MgOHCl, will be detrimental in Gen3 CSP plants, necessitating prohibitively expensive containment alloys and frequent replacement of corroded components. Pre-purification of salt with Mg metal at temperatures above 650 degrees C is the current method for removing corrosive impurities from chloride salts before they are introduced to CSP systems. However, this is not a suitable method for impurity removal during plant operation. First, this method will produce MgO particulates which will damage plant components. Second, Mg metal is solid at the low temperature point (500 degrees C), so the purification will not proceed at a fast rate. At the high temperature point, Mg is soluble. In this case, fast purification may proceed, but dissolved metal is likely to precipitate out in cold-temperature point components, causing damage. In contrast, our electrochemically driven method allows fast Mg-based purification to proceed at the low temperature point, without formation of harmful particulates and without the risk of Mg metal precipitation. This novel approach is inspired by electrorefining techniques that are widely employed in industrial metallurgy for removal of impurities from metals. Impurities in the incoming molten salt will be reduced to inert MgO at the cathode, which can be removed by periodically washing the cell with acid. Simultaneously, Mg dissolution at the anode will ensure salt composition is maintained, with no net removal of Mg2+. We have validated this electrochemical approach at lab scale under static conditions with batch rectors. Furthermore, we have performed analytical modeling and technoeconomic analysis to produce a preliminary engineering design for the purification flow cell.
Subject Fused salts -- United States.
Chlorides -- United States.
Corrosion and anti-corrosives -- United States.
Solar power plants -- United States.
Fused salt electrolysis.
Chlorures -- États-Unis.
Centrales solaires -- États-Unis.
Électrolyse par sel fondu.
Chlorides
Corrosion and anti-corrosives
Fused salt electrolysis
Fused salts
Solar power plants
United States https://id.oclc.org/worldcat/entity/E39PBJtxgQXMWqmjMjjwXRHgrq
Indexed Term CSP
electrochemistry
molten salts
Added Author National Renewable Energy Laboratory (U.S.), issuing body.
United States. Department of Energy. Solar Energy Technologies Office, sponsoring body.
Added Title Electrochemical mitigation of corrosion in molten chloride salts during concentrating solar power plant operation
Standard No. 0000-0001-7154-6543
Gpo Item No. 0430-P-09 (online)
Sudoc No. E 9.22:NREL/PR-5500-80080

 
    
Available items only