Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Multiscale biomechanical modeling of the brain / edited by Raj Prabhu and Mark Horstemeyer.

Publication Info. London : Academic Press, [2022]

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Print version record.
Contents Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1 -- The multiscale nature of the brain and traumatic brain injury -- 1.1 Introduction -- 1.2 The brain's multiscale structure -- 1.2.1 Gross anatomy -- 1.2.1.1 Cerebrum -- 1.2.1.2 Cerebellum -- 1.2.1.3 Diencephalon -- 1.2.1.4 Brainstem -- 1.2.2 Microanatomy -- 1.2.2.1 Neuroglia -- 1.2.2.2 Neurons -- 1.3 The multiscale nature of TBI -- 1.3.1 Multiscale injury mechanisms -- 1.3.2 Types of injury -- 1.3.3 Examples of injuries -- 1.3.4 Neurobehavioral sequelae -- 1.3.5 TBI research methods -- 1.3.5.1 Experiments -- 1.3.5.2 Computational models (simulations) -- 1.4 Summary -- References -- Chapter 2 -- Introduction to multiscale modeling of the human brain -- 2.1 Introduction -- 2.2 Constitutive modeling of the brain -- 2.3 Brain tissue experiments used for constitutive modeling calibration -- 2.4 Modeling summary of upcoming chapters in the book -- 2.5 Summary -- References -- Chapter 3 -- Density functional theory and bridging to classical interatomic force fields -- 3.1 Introduction -- 3.1.1 Why quantum mechanics? -- 3.1.2 Physical chemistry of biomechanical systems -- 3.2 Density functional theory -- 3.3 Downscaling requirements of classical force field atomistic models -- 3.3.1 Upscaling properties -- 3.4 Sample atomistic force fields formalism and development of an interatomic potential for hydrocarbons -- 3.4.1 MEAMBO -- 3.4.2 Calibration of the MEAMBO potential -- 3.4.3 Parameterization of the interatomic potential -- 3.4.4 Validation of the interatomic force fields -- 3.5 Summary -- References -- Chapter 4 -- Modeling nanoscale cellular structures using molecular dynamics -- 4.1 Introduction -- 4.2 Methods -- 4.2.1 Molecular dynamics simulation method -- 4.2.2 Atomic force fields.
4.2.3 Simulation ensembles of atoms -- 4.2.4 Boundary conditions -- 4.2.5 Current simulation details -- 4.2.6 Molecular dynamics analysis methods for the phospholipid bilayer (neuron membrane) -- 4.2.6.1 Stress-strain behavior of the neuron membrane -- 4.2.6.2 Image analysis for stereological quantification of neuron membrane damage -- 4.3 Results and discussion for the phospholipid bilayer (neuron membrane) -- 4.3.1 Stress-strain and damage response -- 4.3.2 Membrane failure limit diagram -- 4.4 Summary -- Acknowledgments -- References -- Chapter 5 -- Microscale mechanical modeling of brain neuron(s) and axon(s) -- 5.1 Introduction -- 5.2 Modeling microscale neurons -- 5.2.1 Modeling neurons -- 5.2.2 Modeling mechanical behavior of axons -- 5.3 Summary and future -- References -- Chapter 6 -- Mesoscale finite element modeling of brain structural heterogeneities and geometrical complexities -- 6.1 Introduction -- 6.1.1 Modeling length scale -- 6.2 Methods -- 6.2.1 Computational methods for properties -- 6.2.2 Model validation and boundary conditions -- 6.3 Results and discussion -- 6.3.1 Geometrical complexities -- 6.3.1.1 The effects of the sulci -- 6.3.1.2 Sulcus orientation -- 6.3.1.3 Sulcus length -- 6.4 Summary -- References -- Chapter 7 -- Modeling mesoscale anatomical structures in macroscale brain finite element models -- 7.1 Introduction -- 7.2 Macroscale brain finite element model -- 7.3 Mesoscale anatomical structures and imaging techniques -- 7.4 The importance of structural anisotropy in macroscale models of TBI -- 7.5 Material-based method -- 7.6 Structure-based method -- 7.7 Summary and future perspectives -- References -- Chapter 8 -- A macroscale mechano-physiological internal state variable (MPISV) model for neuronal membrane damage with ... -- 8.1 Introduction -- 8.1.1 Definitions.
8.2 Membrane disruption -- 8.3 Development of damage evolution equation -- 8.3.1 Pore number density rate -- 8.3.2 Pore growth rate -- 8.3.3 Pore resealing -- 8.4 Garnering data from molecular dynamics simulations -- 8.5 Calibration of the mechano-physiological internal state variable damage rate equations -- 8.6 Sensitivity analysis of damage model at this length scale -- 8.7 Comparison of model with cell culture studies -- 8.8 Discussion -- 8.9 Summary -- References -- Chapter 9 -- MRE-based modeling of head trauma -- 9.1 Introduction -- 9.2 Model formulation -- 9.2.1 MRE acquisition and inversion -- 9.2.2 Finite element mesh generation -- 9.2.3 Material properties -- 9.2.4 Experimental verification -- 9.3 Results and discussion -- 9.4 Conclusion -- References -- Chapter 10 -- Robust concept exploration of driver's side vehicular impacts for human-centric crashworthiness -- 10.1 Frame of reference -- 10.2 Problem definition -- 10.3 Adapted CEF for robust concept exploration -- 10.4 Head and neck injury criteria-based robust design of vehicular impacts -- 10.4.1 Clarification of design task-Step A -- 10.4.2 Design of experiments-Step B -- 10.4.3 Finite element car crash simulations for predicting injury response-Step C -- 10.4.3.1 Finite element model -- 10.4.3.2 Head injury metric analysis -- 10.4.3.3 Neck injury metric analysis -- 10.4.4 Building surrogate models-Step D -- 10.4.5 Formulation of robust design cDSP-Step E -- 10.4.6 Formulating the design scenarios, exercising the cDSP and exploration of solution space-Step E -- 10.5 Future: correlate human brain injury to vehicular damage -- 10.6 Summary -- References -- Chapter 11 -- Development of a coupled physical-computational methodology for the investigation of infant head injury -- 11.1 Introduction -- 11.2 Methods -- 11.2.1 Pediatric head development.
11.2.2 Material properties -- 11.2.3 Mesh convergence -- 11.2.4 Boundary and loading conditions -- 11.2.5 Global validation of the FE-head against PMHS -- 11.2.6 Global, regional, and local validation of the FE-head against the physical model -- 11.2.7 Statistical analysis -- 11.3 Results and discussion -- 11.3.1 Global validation of the FE-head versus the postmortem human surrogate -- 11.3.2 Global validation of the FE-head versus the physical model -- 11.3.3 FE-head regional and local validation versus the physical model -- 11.3.4 Head deformation -- 11.4 Summary -- References -- Chapter 12 -- Experimental data for validating the structural response of computational brain models -- 12.1 Introduction -- 12.2 Methods -- 12.2.1 Experimental brain pressure measurements -- 12.2.2 Experimental brain deformation measurements -- 12.2.2.1 High-speed X-ray -- 12.2.2.2 Dynamic ultrasound -- 12.2.2.3 Sonomicrometry -- 12.2.2.4 Tagged magnetic resonance imaging -- 12.2.2.5 Magnetic resonance elastography -- 12.3 Challenges and limitations -- 12.4 Summary and future perspectives -- References -- Chapter 13 -- A review of fluid flow in and around the brain, modeling, and abnormalities -- 13.1 Introduction -- 13.2 Flow anatomy -- 13.2.1 Ventricular system -- 13.2.2 Ventricles and subarachnoid space -- 13.3 Characteristic numbers -- 13.3.1 Reynolds number -- 13.3.2 Womersley number -- 13.3.3 Péclet number -- 13.4 Common brain flow abnormalities -- 13.4.1 Misfolded proteins -- 13.4.2 Injury -- 13.4.3 Reduced arterial pulsatility -- 13.4.4 Hydrocephalus -- 13.4.5 Chiari malformation -- 13.4.6 Syringomyelia and syringobulbia -- 13.5 Boundary conditions for models -- 13.5.1 General comments -- 13.5.2 Cardiac flow -- 13.5.3 Respiratory flow -- 13.5.4 Circulatory flow -- 13.5.4.1 Production-classical model.
13.5.4.2 Absorption-classical model -- 13.5.4.3 New model -- 13.5.4.4 Diffusive versus advective transport -- 13.5.5 Intracranial pressure -- 13.6 Brain measurement and imaging -- 13.6.1 Magnetic resonance imaging -- 13.6.2 Spin/field/gradient echo MRI -- 13.6.3 Phase contrast MRI -- 13.6.4 MRI limitations -- 13.6.5 Pressure monitoring -- 13.6.6 MRI segmentation -- 13.7 Flow modeling -- 13.7.1 CFD simplifications: rigid walls -- 13.7.2 CFD simplifications: microstructures -- 13.7.2.1 CFD simplifications: arachnoid granulations -- 13.7.2.2 CFD simplifications: arachnoid trabeculae -- 13.7.2.3 CFD simplifications: other structures -- 13.8 Literature gap -- References -- Chapter 14 -- Resonant frequencies of a human brain, skull, and head -- 14.1 Introduction -- 14.2 Problem set-up for the finite element simulations -- 14.3 Results -- 14.3.1 Whole head: fundamental frequency and mode shapes -- 14.3.2 Brain: fundamental frequency and mode shapes -- 14.4 Discussion -- 14.5 Conclusions -- References -- Chapter 15 -- State-of-the-art of multiscale modeling of mechanical impacts to the human brain -- 15.1 Introduction -- 15.2 Work to be completed -- 15.2.1 Multiphysics aspects of the brain -- 15.2.2 Multiscale structure-property relationships of the brain -- 15.2.3 Different biological effects on the brain -- 15.2.4 The liquid-solid aspects of the brain -- 15.2.5 Different human ages -- 15.3 Conclusions -- References -- Index -- Back cover.
Subject Brain -- Models.
Biomedical engineering.
Cerveau -- Modèles.
Génie biomédical.
biomedical engineering.
Biomedical engineering
Brain -- Models
Added Author Prabhu, Raj K., editor.
Horstemeyer, Mark F., editor.
Other Form: Print version: 9780128181454
Print version: Multiscale biomechanical modeling of the brain. London : Academic Press, [2022] 0128181443 9780128181447 (OCoLC)1233165153
Print version: PRABHU, RAJ K. HORSTEMEYER, MARK F. MULTISCALE BIOMECHANICAL MODELING OF THE BRAIN. [S.l.] : ELSEVIER ACADEMIC PRESS, 2021 0128181443 (OCoLC)1233165153
ISBN 9780128181454 (electronic bk.)
0128181451 (electronic bk.)
9780128181447
0128181443
Standard No. AU@ 000070156337
AU@ 000074353415

 
    
Available items only