Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Nanowires for energy applications / edited by Sudha Mokkapati, Chennupati Jagadish.

Publication Info. Cambridge, MA : Academic Press, 2018.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Semiconductors and semimetals ; volume 98
Semiconductors and semimetals ; v. 98.
Note Includes index.
Online resource; title from PDF title page (ScienceDirect, viewed June 12, 2018).
Contents Front Cover; Nanowires for Energy Applications; Copyright; Contents; Contributors; Preface; Chapter One: Inorganic Nanofibers by Electrospinning Techniques and Their Application in Energy Conversion and Storage Sy ... ; 1. Introduction; 2. Electrospun Carbon Nanofibers and Their Application in Energy Storage Systems; 2.1. Working Mechanism of Lithium-Ion Batteries and Supercapacitors; 2.2. One-Dimensional Nanoscaled Carbon Materials; 2.3. Improvements in the Architectural Design of CNFs; 2.3.1. Single-, Multiwalled and Porous Carbon Nanofibers; 2.3.2. Heteroatom-Doped CNFs
2.3.3. Flexible Electrode Design2.4. Challenges and Perspectives; 3. Metallic Nanofibers; 3.1. Synthesis Routes Toward Metallic Nanofibers; 3.2. Metallic Nanofibers as Transparent Conductive Electrodes; 3.3. Metal Nanowires for Magnetic Applications; 3.4. Catalytically Active Metal Nanofibers; 4. Electrospun Inorganic Oxide Nanofibers for Energy Applications; 4.1. Binary Metal Oxide Nanofibers; 4.1.1. TiO2 Nanofibers; 4.1.2. Fe2O3 and WO3 Nanofibers; 4.2. Ternary Oxide Nanofibers; 4.2.1. Perovskite Oxides and Other Complex Structures; 4.3. Challenges and Perspectives
5. Nanofiber Architecture: From Core-Shell Fibers to Yarns5.1. Core-Shell and Hollow Structures; 5.2. Janus-Type Structures; 5.3. Nanofiber Yarns; 6. Summary and Outlook; Acknowledgments; References; Chapter Two: Top-Down Etching of Si Nanowires; 1. Introduction; 2. Nanowires by Dry Etching; 2.1. Introduction to Dry Etching; 2.2. Plasma Etching Process; 2.3. RIE Process; 2.4. RIE Etching Chemistry; 2.5. RIE Etching Processes for Si Nanowire Etching; 2.5.1. Near Room Temperature RIE; 2.5.1.1. Effect of Gas Mixture; 2.5.1.2. Effect of Pressure; 2.5.1.3. Effect of Plasma Energy and Direction
2.5.1.4. Optimization With Linearly Graded Gas Flow2.5.2. Cryogenic RIE for Si Nanowire Etching; 2.5.3. Time-Multiplexed RIE for Si Nanowires; 3. Nanowires by MacEtch; 3.1. Etching Mechanism and Chemical Reactions; 3.2. Effect of Metal Catalyst; 3.3. Mass Transfer of Chemical Reactants; 3.4. Effect of Substrate Properties; 3.5. Effect of Etchant Concentration; 3.6. Fabrication of Vertically Aligned and Periodic Nanowires; 3.7. New Techniques for Controlling the Morphology of Nanowires; 4. Summary; Acknowledgments; References; Chapter Three: Group IV Nanowires for Carbon-Free Energy Conversion
1. Introduction2. Phonon-Engineered Group IV Nanowire and Nanowire-Based Thermoelectrics; 2.1. Basic Concepts of Thermoelectricity; 2.2. Choice of Thermoelectric Materials; 2.3. Generalized Transport Model for Thermoelectric Materials; 2.4. Phonon Engineering and Thermal Conductivity of Silicon-Based Nanowires; 2.5. ZT Investigations in Semiconductor Nanowires; 2.5.1. Group IV Nanowires (Elemental and Alloys); 2.5.2. III-V Nanowires; 2.5.3. Thermoelectric Properties of Other Nanowires; 3. Sn-Containing Group IV Nanowires and Their Potential Applications in Photovoltaics
Subject Nanowires.
Nanofils.
TECHNOLOGY & ENGINEERING -- Mechanical.
Nanowires
Added Author Mokkapati, Sudha, editor.
Jagadish, C. (Chennupati), editor.
Other Form: Print version: Nanowires for energy applications. Cambridge, MA : Academic Press, 2018 0128151390 9780128151396 (OCoLC)1012567438
ISBN 9780128151402 (electronic bk.)
0128151404 (electronic bk.)
9780128151396 (print)
0128151390
Standard No. AU@ 000063566367

 
    
Available items only