Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Nayak, Arun K. (Engineer)

Title Severe accidents in nuclear reactors : corium retention technologies and insights / Arun Nayak and Parimal Kulkarni.

Imprint Duxford : Woodhead Publishing, 2021.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Woodhead Publishing series in energy
Woodhead Publishing in energy.
Note Print version record.
Contents Front cover -- Half title -- Title Page -- Copyright -- Contents -- Foreword -- Nuclear Power -- Preface -- Chapter 1 Introduction -- 1.1 History of light water reactor safety -- 1.2 Pre-history of nuclear safety and nuclear safety assessment -- 1.3 Evolution of siting criteria -- 1.4 Safety in design of nuclear reactors -- 1.5 Risk of nuclear power -- 1.6 The nuclear accidents and lessons learnt -- 1.6.1 Scenario prior to TMI: Accidents in military reactors -- 1.6.2 The accident at TMI -- 1.7 Evolution of safety in design of new reactors in post-TMI accident scenario -- 1.8 The accident at Chernobyl, 1986 -- 1.9 Initiation of severe accident research -- 1.10 Concept of core catcher: How cooling is achieved in the Core Catcher? -- 1.11 Evolution of small modular reactors -- 1.12 Another blow to nuclear industry -- the Fukushima accident -- 1.12.1 Analysis of Fukushima accidents -- 1.12.2 Consequences of Fukushima accident -- 1.12.3 Implications in new reactor designs -- 1.13 Closure -- References -- Chapter 2 Progression of severe accidents in water cooled reactors -- 2.1 Introduction -- 2.2 Transient evolution of severe accident progression -- 2.2.1 Light water reactors -- 2.2.2 Severe accident progression in generic PHWRs -- 2.2.3 Severe accident progression in old generation Indian PHWRs -- 2.2.4 Pressure vessel type non CANDU PHWRs (Atucha type) -- 2.3 Managing core melt accidents -- 2.3.1 The in-vessel melt retention -- 2.3.2 The ex-vessel corium coolability (core catcher) -- 2.4 Managing core melt accidents in PHWRs -- 2.5 Closure -- References -- Chapter 3 Experiments with high temperature melts: challenges and issues -- 3.1 Introduction -- 3.2 Scaling consideration for simulant materials -- 3.3 High temperature melt generation -- 3.3.1 Electrical melting furnaces -- 3.3.2 Induction melting -- 3.4 Thermite melting.
3.4.1 Utilization of thermite for generating corium simulants -- 3.5 Measurement of high temperatures -- 3.5.1 Thermocouples -- 3.5.2 Pyrometers -- 3.6 Safety issues in conducting high temperature melts -- 3.6.1 Electrical short circuits and fires -- 3.6.2 Chemical fires -- 3.6.3 Explosions -- 3.7 Summary -- References -- Chapter 4 Corium coolability in PHWRs: In-vessel retention -- 4.1 Introduction -- 4.2 Basis for scaling -- 4.2.1 Scaling philosophy for decay heat dominating regime -- 4.2.2 Scaling philosophy for stored heat dominated regime -- 4.3 In-calandria corium coolability with decay heat simulation for a prolonged duration -- 4.3.1 Details of experimental setup -- 4.3.2 Scaling of the experiment -- 4.3.3 Experimental findings -- 4.3.4 Insights from the experiments -- 4.4 In calandria corium coolability in stored heat dominated regime -- 4.4.1 In calandria corium coolability with MnO-TiO2 simulant material at 2000°C -- 4.4.2 In-calandria corium coolability at high temperature (2300°C) with prototypic simulant material -- 4.4.3 In calandria corium coolability with 100 kg melt at prototypic condition -- 4.4.4 In calandria corium coolability with 500 kg melt at prototypic condition -- 4.5 Integrity of calandria vessel weld joints against high temperature load -- 4.5.1 Introduction -- 4.5.2 The Experimental setup -- 4.5.3 Process Instrumentation -- 4.5.4 Experiments conducted -- 4.5.5 Results -- 4.5.6 Summary -- 4.6 Influence of moderator drain pipe in calandria vessel on retention of molten corium -- 4.6.1 Introduction -- 4.6.2 Simulation of retention of molten corium in calandria vessel with moderator drain pipe -- 4.7 Critical heat flux on curved calandria vessel vs the imposed heat flux due to molten corium -- 4.7.1 Introduction -- 4.7.2 Investigation of CHF on curved vessel -- 4.7.3 Phenomenology of occurrence of CHF.
4.7.4 Variation of heat transfer coefficient -- 4.7.5 Effect of moderator drain pipe on critical heat flux -- 4.8 Insights -- References -- Chapter 5 Numerical modelling of in-vessel retention in PHWRs -- 5.1 Introduction -- 5.2 Heat transfer in calandria vessel -- 5.2.1 Heat transfer modes in the vessel -- 5.2.2 Model assumptions -- 5.2.3 Governing equations -- 5.2.4 Solution strategy -- 5.2.5 Model validation -- 5.2.6 Application of model to prototypic condition -- 5.2.7 Discussions -- 5.2.8 Effect of reducing decay heat -- 5.2.9 Summary -- 5.3 CFD simulation of melt pool coolability in calandria vessel in prototypic condition -- 5.3.1 Modelling and solution algorithm -- 5.3.2 Material properties -- 5.3.3 Corium coolability behavior inside the calandria -- 5.3.4 Summary -- 5.4 Simulation of thermal and structural loads on the calandria vessel -- 5.4.1 Introduction -- 5.4.2 Thermal-structural analysis of calandria vessel -- 5.5 Closure -- References -- Chapter 6 Ex-vessel molten corium coolability -- 6.1 Introduction -- 6.2 Issues in exvessel corium coolability -- 6.2.1 Corium coolability issues in top flooding -- 6.2.2 Corium coolability issues in bottom flooding -- 6.2.3 Issues in corium coolability with top flooding and indirect vessel cooling -- 6.3 Corium coolability under top flooding -- 6.3.1 Experimental investigations -- 6.3.2 Modeling aspects of corium coolability under top flooding -- 6.3.3 New model development of melt coolability studies under top flooding -- 6.3.4 Influence of thermo-physical properties of the melt on coolability -- 6.3.5 Scaling criteria for simulation of coolabilty of molten corium -- 6.3.6 Further validation of model on water ingression in top flooding -- 6.3.7 Validation of model with experimental data -- 6.3.8 Summary -- 6.4 Corium coolability with bottom flooding -- 6.4.1 Experiments performed.
6.4.2 Model development -- 6.4.3 Scalability of bottom flooding -- 6.5 Corium coolability in core catcher with external vessel cooling and top flooding -- 6.5.1 The rationale -- 6.5.2 Corium coolability at prototypic condition -- 6.5.3 Demonstration of long term corium coolability and decay heat removal -- 6.6 Closure -- References -- Chapter 7 Molten core concrete interaction and ablation of sacrificial material in ex-vessel scenarios -- 7.1 Introduction -- 7.2 Molten core concrete interaction (MCCI) -- 7.2.1 Phenomenology of MCCI -- 7.2.2 State of the art on molten core concrete interaction -- 7.2.3 Numerical modelling of MCCI -- 7.3 Benchmarking of the model -- 7.4 Thermal decomposition characteristics of different concretes -- 7.5 Corium coolability during MCCI under top flooded conditions -- 7.6 Summary -- 7.7 Ablation behaviour of sacrificial material -- 7.7.1 Characteristics of sacrificial material -- 7.7.2 Phenomenology of ablation of sacrificial material in core catcher -- 7.7.3 Numerical modelling of the ablation phenomenon -- 7.7.4 Benchmarking of the model with experimental data -- 7.8 Application to prototypic condition -- 7.9 Closure -- References -- Chapter 8 Fuel coolant interaction -- 8.1 Introduction -- 8.2 Mechanism of steam explosion -- 8.3 State of the art -- 8.3.1 Small scale experiments -- 8.3.2 Medium scale experiments -- 8.3.3 Insights from these experiments -- 8.3.4 Prototypic large scale experiments -- 8.4 Fuel coolant interaction experiments -- 8.4.1 Low temperature experiments -- 8.4.2 Details of the experiments conducted -- 8.4.3 Test section details -- 8.4.4 Operating procedures -- 8.4.5 Post test analysis -- 8.4.6 Summary -- 8.5 High temperature experiments with prototypic melt -- 8.5.1 Test matrix -- 8.5.2 Test section details -- 8.5.3 Results and discussions -- 8.5.4 Findings from the experiments -- 8.6 Discussions.
8.7 Further discussions -- 8.8 Closure -- References -- Chapter 9 Debris bed hydrodynamics, convective heat transfer and dryout -- 9.1 Introduction -- 9.2 Formation and characterization of debris beds formed during severe accident -- 9.3 Issues in coolability of heat generating debris beds -- 9.4 Hydrodynamics and heat transfer behavior of irregularly shaped particulate debris bed -- 9.4.1 Experimental set-up -- 9.4.2 Evaluation of debris bed friction characteristics -- 9.4.3 Experiments under boiling two phase conditions -- 9.4.4 Dryout behavior -- 9.4.5 Assessment of capability of models for prediction of dryout heat flux and pressure drop behavior -- 9.5 Natural convection heat transfer behavior of a radially stratified particulate debris bed -- 9.5.1 Experimental facility -- 9.5.2 Experiments for dryout behavior of radially stratified bed -- 9.6 Natural convection heat transfer behavior of a large multidimensional debrs bed with volumetric heat generation -- 9.6.1 Experimental setup -- 9.6.2 Operating procedure -- 9.6.3 Temperature profiles and contours at different locations in the bed -- 9.6.4 Heat transfer characteristics between bed and overlying water pool -- 9.7 Closure -- References -- Chapter 10 Conclusions -- 10.1 Introduction -- 10.2 Summary of severe accident phenomena in nuclear power plants -- 10.3 Severe accident management strategies -- 10.4 SAMG for new nuclear plants -- 10.5 Insights from corium cooling studies -- 10.6 Way forward -- References -- Index -- Back cover.
Subject Nuclear reactors -- Safety measures.
Nuclear reactor accidents.
Réacteurs nucléaires -- Sécurité -- Mesures.
Réacteurs nucléaires -- Accidents.
Nuclear reactor accidents
Nuclear reactors -- Safety measures
Genre/Form Electronic book.
Added Author Kulkarni, Parimal.
Other Form: Ebook version : 9780128223055
Print version: Nayak, Arun K. (Engineer). Severe accidents in nuclear reactors. Duxford : Woodhead Publishing, 2021 0128223049 9780128223048 (OCoLC)1220991797
Print version: NAYAK, ARUN K. SEVERE ACCIDENTS IN NUCLEAR REACTORS. [S.l.] : WOODHEAD PUBLISHING UK, 2021 0128223049 (OCoLC)1220991797
ISBN 9780128223055 (electronic bk.)
0128223057 (electronic bk.)
9780128223048
0128223049
Standard No. AU@ 000069746214
UKMGB 020173478
AU@ 000069972003

 
    
Available items only