Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Record 15 of 29
Previous Record Next Record
E-Book/E-Doc
Author Theodoridis, Sergios, 1951-

Title Machine learning : a Bayesian and optimization perspective / Sergios Theodoridis.

Publication Info. London ; San Diego : Elsevier : Academic Press, 2015.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (xxi, 1050 pages) : illustrations (some color)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series .NET Developers Series
.NET Developers Series.
Bibliography Includes bibliographical references and index.
Summary This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques - together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.
Note Print version record.
Contents Front Cover -- Machine Learning: A Bayesian and Optimization Perspective -- Copyright -- Contents -- Preface -- Acknowledgments -- Notation -- Dedication -- Chapter 1: Introduction -- 1.1 What Machine Learning is About -- 1.1.1 Classification -- 1.1.2 Regression -- 1.2 Structure and a Road Map of the Book -- References -- Chapter 2: Probability and Stochastic Processes -- 2.1 Introduction -- 2.2 Probability and Random Variables -- 2.2.1 Probability -- Relative frequency definition -- Axiomatic definition -- 2.2.2 Discrete Random Variables -- Joint and conditional probabilities -- Bayes theorem -- 2.2.3 Continuous Random Variables -- 2.2.4 Mean and Variance -- Complex random variables -- 2.2.5 Transformation of Random Variables -- 2.3 Examples of Distributions -- 2.3.1 Discrete Variables -- The Bernoulli distribution -- The Binomial distribution -- The Multinomial distribution -- 2.3.2 Continuous Variables -- The uniform distribution -- The Gaussian distribution -- The central limit theorem -- The exponential distribution -- The beta distribution -- The gamma distribution -- The Dirichlet distribution -- 2.4 Stochastic Processes -- 2.4.1 First and Second Order Statistics -- 2.4.2 Stationarity and Ergodicity -- 2.4.3 Power Spectral Density -- Properties of the autocorrelation sequence -- Power spectral density -- Transmission through a linear system -- Physical interpretation of the PSD -- 2.4.4 Autoregressive Models -- 2.5 Information Theory -- 2.5.1 Discrete Random Variables -- Information -- Mutual and conditional information -- Entropy and average mutual information -- 2.5.2 Continuous Random Variables -- Average mutual information and conditional information -- Relative entropy or Kullback-Leibler divergence -- 2.6 Stochastic Convergence -- Convergence everywhere -- Convergence almost everywhere -- Convergence in the mean-square sense.
Convergence in probability -- Convergence in distribution -- Problems -- References -- Chapter 3: Learning in Parametric Modeling: Basic Concepts and Directions -- 3.1 Introduction -- 3.2 Parameter Estimation: The Deterministic Point of View -- 3.3 Linear Regression -- 3.4 Classification -- Generative versus discriminative learning -- Supervised, semisupervised, and unsupervised learning -- 3.5 Biased Versus Unbiased Estimation -- 3.5.1 Biased or Unbiased Estimation? -- 3.6 The Cramér-Rao Lower Bound -- 3.7 Sufficient Statistic -- 3.8 Regularization -- Inverse problems: Ill-conditioning and overfitting -- 3.9 The Bias-Variance Dilemma -- 3.9.1 Mean-Square Error Estimation -- 3.9.2 Bias-Variance Tradeoff -- 3.10 Maximum Likelihood Method -- 3.10.1 Linear Regression: The Nonwhite Gaussian Noise Case -- 3.11 Bayesian Inference -- 3.11.1 The Maximum A Posteriori Probability Estimation Method -- 3.12 Curse of Dimensionality -- 3.13 Validation -- Cross-validation -- 3.14 Expected and Empirical Loss Functions -- 3.15 Nonparametric Modeling and Estimation -- Problems -- References -- Chapter 4: Mean-Square Error Linear Estimation -- 4.1 Introduction -- 4.2 Mean-Square Error Linear Estimation: The Normal Equations -- 4.2.1 The Cost Function Surface -- 4.3 A Geometric Viewpoint: Orthogonality Condition -- 4.4 Extension to Complex-Valued Variables -- 4.4.1 Widely Linear Complex-Valued Estimation -- Circularity conditions -- 4.4.2 Optimizing with Respect to Complex-Valued Variables: Wirtinger Calculus -- 4.5 Linear Filtering -- 4.6 MSE Linear Filtering: A Frequency Domain Point of View -- Deconvolution: image deblurring -- 4.7 Some Typical Applications -- 4.7.1 Interference Cancellation -- 4.7.2 System Identification -- 4.7.3 Deconvolution: Channel Equalization -- 4.8 Algorithmic Aspects -- Forward and backward MSE optimal predictors.
4.8.1 The Lattice-Ladder Scheme -- Orthogonality of the optimal backward errors -- 4.9 Mean-Square Error Estimation of Linear Models -- 4.9.1 The Gauss-Markov Theorem -- 4.9.2 Constrained Linear Estimation: The Beamforming Case -- 4.10 Time-Varying Statistics: Kalman Filtering -- Problems -- MATLAB Exercises -- References -- Chapter 5: Stochastic Gradient Descent: The LMS Algorithm and its Family -- 5.1 Introduction -- 5.2 The Steepest Descent Method -- 5.3 Application to the Mean-Square Error Cost Function -- Time-varying step-sizes -- 5.3.1 The Complex-Valued Case -- 5.4 Stochastic Approximation -- Application to the MSE linear estimation -- 5.5 The Least-Mean-Squares Adaptive Algorithm -- 5.5.1 Convergence and Steady-State Performance of the LMS in Stationary Environments -- Convergence of the parameter error vector -- 5.5.2 Cumulative Loss Bounds -- 5.6 The Affine Projection Algorithm -- Geometric interpretation of APA -- Orthogonal projections -- 5.6.1 The Normalized LMS -- 5.7 The Complex-Valued Case -- The widely linear LMS -- The widely linear APA -- 5.8 Relatives of the LMS -- The sign-error LMS -- The least-mean-fourth (LMF) algorithm -- Transform-domain LMS -- 5.9 Simulation Examples -- 5.10 Adaptive Decision Feedback Equalization -- 5.11 The Linearly Constrained LMS -- 5.12 Tracking Performance of the LMS in Nonstationary Environments -- 5.13 Distributed Learning: The Distributed LMS -- 5.13.1 Cooperation Strategies -- Centralized networks -- Decentralized networks -- 5.13.2 The Diffusion LMS -- 5.13.3 Convergence and Steady-State Performance: Some Highlights -- 5.13.4 Consensus-Based Distributed Schemes -- 5.14 A Case Study: Target Localization -- 5.15 Some Concluding Remarks: Consensus Matrix -- Problems -- MATLAB Exercises -- References -- Chapter 6: The Least-Squares Family -- 6.1 Introduction.
Protein folding prediction as a classification task -- Classification of folding prediction via decision trees -- Problems -- MATLAB Exercises -- References -- Chapter 8: Parameter Learning: A Convex Analytic Path -- 8.1 Introduction -- 8.2 Convex Sets and Functions -- 8.2.1 Convex Sets -- 8.2.2 Convex Functions -- 8.3 Projections onto Convex Sets -- 8.3.1 Properties of Projections -- 8.4 Fundamental Theorem of Projections onto Convex Sets -- 8.5 A Parallel Version of POCS -- 8.6 From Convex Sets to Parameter Estimation and Machine Learning -- 8.6.1 Regression -- 8.6.2 Classification -- 8.7 Infinite Many Closed Convex Sets: The Online Learning Case -- 8.7.1 Convergence of APSM -- Some practical hints -- 8.8 Constrained Learning -- 8.9 The Distributed APSM -- 8.10 Optimizing Nonsmooth Convex Cost Functions -- 8.10.1 Subgradients and Subdifferentials -- 8.10.2 Minimizing Nonsmooth Continuous Convex Loss Functions: The BatchLearning Case -- The subgradient method -- The generic projected subgradient scheme -- The projected gradient method (PGM) -- Projected subgradient method -- 8.10.3 Online Learning for Convex Optimization -- The PEGASOS algorithm -- 8.11 Regret Analysis -- Regret analysis of the subgradient algorithm -- 8.12 Online Learning and Big Data Applications: A Discussion -- Approximation, estimation and optimization errors -- Batch versus online learning -- 8.13 Proximal Operators -- 8.13.1 Properties of the Proximal Operator -- 8.13.2 Proximal Minimization -- Resolvent of the subdifferential mapping -- 8.14 Proximal Splitting Methods for Optimization -- The proximal forward-backward splitting operator -- Alternating direction method of multipliers (ADMM) -- Mirror descent algorithms -- Problems -- MATLAB Exercises -- 8.15 Appendix to Chapter 8 -- References -- Chapter 9: Sparsity-Aware Learning: Concepts and Theoretical Foundations.
Subject Machine learning.
Bayesian statistical decision theory.
Mathematical optimization.
Apprentissage automatique.
Théorie de la décision bayésienne.
Optimisation mathématique.
COMPUTERS -- General.
Bayesian statistical decision theory
Machine learning
Mathematical optimization
Other Form: Print version: Theodoridis, Sergios, 1951- Machine learning 9780128015223 (OCoLC)893899296
ISBN 9780128017227 (electronic bk.)
0128017228 (electronic bk.)
9780128015223
0128015225
Standard No. DEBBG BV042527205
CHVBK 341788597
CHBIS 010547808
DEBSZ 45152554X
NLGGC 401038203
NZ1 16241453
GBVCP 825926696
DEBSZ 48237456X
AU@ 000054939408
UKMGB 017050419

 
    
Available items only