Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Process safety calculations / edited by Renato Benintendi.

Publication Info. Amsterdam : Elsevier, 2021.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition Second edition.
Description 1 online resource (1 volume) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Summary Process Safety Calculations, Second Edition remains to be an essential guide for students and practitioners in process safety engineering who are working on calculating and predicting risks and consequences. The book focuses on calculation procedures based on basic chemistry, thermodynamics, fluid dynamics, conservation equations, kinetics and practical models. It provides helpful calculations to demonstrate compliance with regulations and standards, such as Seveso directive(s)/COMAH, CLP regulation, ATEX directives, PED directives, REACH regulation, OSHA/NIOSH and UK ALARP, along with risk and consequence assessment, stoichiometry, thermodynamics, stress analysis and fluid-dynamics. This fully revised, updated and expanded second edition follows the same organization as the first, including the original three main parts, Fundamentals, Consequence Assessment and Quantitative Risk Assessment. However, the latter part is significantly expanded, including an appendix consisting of five fundamental thematic areas belonging to the risk assessment framework, including in-depth calculations methodologies for some fundamental monothematic macro-areas of process safety.
Note Includes index.
Print version record.
Contents Intro -- Process Safety Calculations -- Copyright -- Contents -- Author Biography -- Preface to the Second Edition -- Part 1: Fundamentals -- Chapter 1: Chemistry of Process Safety -- 1.1. Stoichiometry and Mass Balances -- 1.1.1. Mass Balances -- 1.1.2. Chemical Reactions -- 1.1.3. Jet Flows From Pressurised Systems -- 1.1.4. Flash Flow -- 1.1.5. Absorption and Adsorption -- 1.2. States of Substances in Process Safety -- 1.2.1. Gases and Vapours -- 1.2.2. Liquids -- 1.2.3. Dusts -- 1.2.4. Hybrid Mixtures -- 1.2.5. Explosive Mists -- 1.2.6. Supercritical Fluids -- 1.3. Mass and Concentration Units in Process Safety -- 1.3.1. Partial Volumes (Gas Phase) -- 1.3.2. Mass Fraction (Gas and Liquid Phase) -- 1.3.3. Mass-to-Volume Concentration (Gas and Liquid Phase) -- 1.3.4. Parts per Million (Gas and Liquid Phase) -- 1.3.5. Parts per Million (Gas Phase) -- 1.3.6. Molar Concentration (Aqueous Solutions) -- 1.3.7. Concentration Units Conversion Summary -- 1.4. Solutions and Chemical Equilibrium -- 1.4.1. Gaseous Solutions -- 1.4.2. Kinetics and Equilibrium in Gas Reactive Mixtures -- 1.4.3. Liquid Solutions -- Liquid-liquid solutions -- Vapour-liquid equilibrium in liquid solutions -- 1.4.4. Azeotropic Mixtures -- 1.4.5. Gas-Liquid Equilibrium in Liquid Solutions -- 1.4.6. Gas-Liquid Equilibrium in Acid Gas Removal (AGR) Units -- 1.4.7. Equilibria in Aqueous Solution -- 1.4.8. Hydrogen Sulphide -- 1.4.9. Sulphuric and Sulphurous Acid -- 1.4.10. Carbon Dioxide -- 1.4.11. Ammonia -- 1.4.12. Chlorine -- 1.4.13. Hydrolysis -- 1.5. Absorption and Adsorption -- 1.5.1. Absorption With Chemical Reaction -- 1.5.2. Stripping -- 1.5.3. Adsorption -- 1.6. Applications -- 1.6.1. Kinetics and Equilibrium of Sulphur Oxides -- 1.6.2. Properties of Hydrogen Sulphide -- 1.6.3. Properties of Ammonia -- 1.6.4. Properties of Sulphur Dioxide.
1.6.5. Properties of Sulphur Trioxide -- 1.6.6. Properties of Carbon Monoxide -- 1.6.7. Properties of Carbon Dioxide -- 1.6.8. Properties of Chlorine -- 1.6.9. Properties of Benzene -- Chapter 2: Thermodynamics and Thermochemistry of Process Safety -- 2.1. Ideal Gases -- 2.1.1. Standard and Normal Conditions -- 2.2. Real Gases -- 2.2.1. Virial Equation of State -- 2.2.2. Corresponding States -- 2.2.3. State Equations -- 2.3. Polytropic Transformations -- 2.4. State Functions -- 2.4.1. Internal Energy -- 2.4.2. Enthalpy -- 2.4.3. Entropy -- 2.5. Thermodynamic Properties -- 2.5.1. Specific Heats -- 2.5.2. Vapour Pressure -- 2.5.3. Latent Heat of Vaporisation -- 2.5.4. Sound Speed of Liquids and Gases -- 2.6. Heat Transfer Mechanisms -- 2.6.1. Thermal Conduction -- 2.6.2. Thermal Convection -- Empirical correlations for natural thermal convective flow -- Natural convection for vertical and inclined plates -- Natural convection for horizontal plates -- Natural convection for long horizontal cylinders -- Natural convection for spheres in fluids -- Empirical correlations for forced thermal convective flow -- Turbulent flow in pipes -- Cylinders in cross flow -- Flow around spheres -- 2.6.3. Thermal Radiation -- Emissivities of solid surfaces -- View factors -- Infinitely long parallel cylinders -- Infinitely long parallel cylinders of the same diameter -- Perpendicular surfaces with a common edge -- Linear and circular surfaces -- Coaxial parallel disks -- Parallel rectangles -- Perpendicular rectangles with a common edge -- Thermal radiation and emissivities of gases -- Water vapour -- Carbon dioxide -- 2.7. Applications -- 2.7.1. Isothermal Processes -- Free expansion -- 2.7.2. Isochoric Processes -- 2.7.3. Isobaric Processes -- 2.7.4. Adiabatic Processes -- 2.7.5. Thermodynamics of LNG -- Definition of LNG -- Physical-chemical data of LNG.
2.7.6. Thermodynamics of Pressurised Liquids -- 2.7.7. Thermodynamics of LPG -- 2.7.8. Thermodynamics of Carbon Dioxide -- 2.7.9. Thermodynamics of Ammonia -- 2.7.10. Thermodynamics of Chlorine -- Chapter 3: Reaction Engineering of Process Safety -- 3.1. Background -- 3.2. Reactive Hazards -- 3.3. Homogeneous Reactions -- 3.3.1. Hydrocarbons -- 3.3.2. Carbon Monoxide -- 3.3.3. Hydrogen Sulphide -- 3.3.4. Nitrogen Oxides (NOx) -- 3.4. Heterogeneous Reactions -- 3.4.1. Solid-Catalysed Reactions -- 3.4.2. Noncatalytic Gas-Solid Reactions -- 3.5. Reactor Schemes -- 3.5.1. CSTR (Continuous Stirred Tank Reactor) -- 3.5.2. BATCH-DSTR (Discontinuous Stirred Tank Reactor) -- 3.5.3. PFR (Plug Flow Reactor) -- 3.6. Combustion Reactions -- 3.6.1. Definitions -- 3.6.2. Combustion of Hydrocarbons -- Lower flammability limit -- Upper flammability limit -- Limits of flammability in pure oxygen -- Quenching distance -- 3.6.3. Combustion of Nitrogenated Compounds -- 3.6.4. Combustion of Sulphur Compounds -- 3.6.5. Combustion of Chlorinated Compounds -- 3.6.6. Combustion With Halogens Like Oxidant -- 3.6.7. Reaction of Combustion With Oxides of Nitrogen -- 3.6.8. Combustion of Phosphorated Compounds -- 3.7. Reaction Heat -- 3.8. Combustion Heat -- 3.9. Heat of Solution -- 3.10. Heat of Neutralisation -- 3.11. Endothermic Processes -- 3.12. Pyrophoricity -- 3.12.1. Pyrophoric Substances -- 3.12.2. Pyrophoricity Scenarios -- 3.13. Reactivity of Remarkable Substances -- 3.13.1. Ammonium Nitrate -- 3.13.2. Chlorates -- 3.13.3. Organic Peroxides and Hydrogen Peroxide -- 3.14. Self-Heating -- 3.14.1. Semenov Model -- 3.14.2. Frank-Kamenetskii Model -- 3.14.3. Thomas Model -- 3.14.4. Choice of a Model -- 3.15. Water and Spray Curtains -- Chapter 4: Fluid Dynamics of Process Safety -- 4.1. Equations of Conservation -- 4.1.1. Equation of Mass Conservation.
4.1.2. Equation of Conservation of Momentum -- 4.1.3. Equations of Conservation of Energy -- 4.2. Joule-Thomson Expansion in Process Safety -- 4.3. Turbulent and Laminar Flows -- 4.3.1. Laminar-Turbulent Transition -- 4.4. Liquid Elasticity (Bulk Modulus) -- 4.4.1. Bulk Modulus and Sound Velocity -- 4.5. Fluid Hammer (Surge) -- 4.5.1. Water Hammer in Pipelines -- 4.6. Theory of Jets -- 4.6.1. Definitions -- Jet -- Turbulent gas jet -- Transitional gas jet -- Laminar gas jet -- 4.6.2. Choked and Unchoked Jet -- 4.6.3. Isothermal Turbulent (Choked) Gas Steady Jet -- Choked Jet -- Outlet plane -- Shock plane -- 4.6.4. Unsteady Gas Jet -- 4.6.5. Transient Release of Turbulent Jets -- 4.6.6. Effect of Wind on Turbulent Jet -- 4.6.7. Non-Isothermal Jets -- 4.6.8. Unchoked (Subsonic) Flow -- Equivalent gases -- Light gases -- Heavy gases -- 4.6.9. Turbulent to Laminar Jet Comparison -- 4.7. Buoyancy -- 4.8. Flashing Liquids -- 4.8.1. Jet Shattering by Flashing -- 4.9. Spray Release and Droplet Dynamics -- 4.9.1. Capillary Break Up -- 4.9.2. Flashing and Aerodynamic Break Up -- 4.9.3. Prediction of the Rain-Out Fraction -- 4.10. Pool Evaporation -- 4.10.1. Simplified Formula for a Single-Component Pool Evaporation -- 4.10.2. Evaporation Flux From a Cryogenic Pool -- 4.11. Hydrogen Sulphide Release From Free Surfaces -- Chapter 5: Loads and Stress Analysis of Process Safety -- 5.1. Structural Failure Scenarios in Process Safety -- 5.2. Key Concepts -- 5.2.1. Burst -- 5.2.2. Explosion -- 5.2.3. Static Pressure -- 5.2.4. Dynamic Pressure -- 5.2.5. Shock and Pressure Wave -- 5.2.6. Deflagration and Detonation -- 5.2.7. Deflagration to Detonation Transition (DDT) -- 5.2.8. Physical Explosion -- 5.2.9. Confined Explosion -- 5.2.10. Unconfined Vapour Cloud Explosion (UVCE) -- 5.2.11. Overpressure and Duration -- 5.2.12. Stagnation Pressure.
5.2.13. Side-on Pressure, Reflected Pressure, Diffracted Pressure -- 5.2.14. Wind or Drag Loads -- 5.2.15. Buckling -- Very long cylinders -- Short cylinders -- 5.2.16. Pressure Piling -- 5.2.17. BLEVE (Boiling Liquid Expansion Vapour Explosion) -- 5.2.18. Rapid Phase Transition -- 5.3. Stresses -- 5.3.1. Tensile and Compression Stresses -- 5.3.2. Shear Stresses -- 5.3.3. Elastic and Plastic Stresses -- 5.3.4. Viscous Creep -- 5.4. Membrane Stresses in Thin-Shell Structures -- 5.4.1. Cylindrical Shell -- Longitudinal stress -- Circumferential stress -- 5.4.2. Spherical Shell -- 5.5. Forces in Piping Bends -- 5.6. Thermal Loads -- 5.7. Flixborough UVCE: Analysis of the Structural Causes -- Balance of forces -- 5.7.1. Stress Analysis -- Bellow shear stress -- Shear stress at the mitre-joint point -- Tensile stress at the mitre-joint point -- 5.7.2. Analysis and Conclusions -- Chapter 6: Statistics and Reliability of Process Safety -- 6.1. Background -- 6.1.1. Gaussian Function -- 6.1.2. Gaussian Probability Distribution -- 6.1.3. Probit Function -- 6.2. Probit Functions for Process Safety -- 6.3. Failure Frequency and Probability -- 6.4. Failures and Faults -- 6.4.1. Definitions -- 6.4.2. Failure Rates -- 6.4.3. Composite Failure Rate -- 6.5. Boolean Algebra -- 6.6. Boolean Algebra in Functional Safety -- 6.6.1. Probability and Frequency of Failure on Demand -- 6.6.2. Common Cause Failure -- Part 2: Consequence Assessment -- Chapter 7: Source Models -- 7.1. Summary of Scenarios -- 7.2. Subcooled Liquids -- 7.2.1. Unpressurised Liquid Discharge From Tanks -- 7.2.2. Unpressurised Liquid Discharge From Horizontal Tanks and Pipelines -- 7.2.3. Pressurised Liquids -- Elastic-to-Torricellian transition (nonvolatile liquids) -- Vessel-type systems -- Pipeline-type systems -- Driving force: Process pressure (highly volatile subcooled liquids)-API 520 method.
Subject Chemical processes -- Safety measures -- Mathematical models.
Chemical processes -- Safety measures -- Standards.
Procédés chimiques -- Sécurité -- Mesures -- Modèles mathématiques.
Procédés chimiques -- Sécurité -- Mesures -- Normes.
Added Author Benintendi, Renato, editor.
Other Form: Print version: Process safety calculations. Second edition. Amsterdam : Elsevier, 2021 9780128235164 (OCoLC)1230924424
ISBN 9780128235164
0128235160
Standard No. AU@ 000068857251

 
    
Available items only