Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Jweeg, Muhsin J.

Title Energy methods and finite element techniques : stress and vibration applications / Muhsin J. Jweeg, Muhannad Al-Waily and Kadhim Kamil Resan.

Publication Info. Amsterdam : Elsevier, [2022]

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Includes index.
Contents Front Cover -- Energy Methods and Finite Element Techniques -- Copyright Page -- Contents -- About the authors -- Preface -- I. Energy Method -- 1 Fundamentals of energy methods -- 1.1 Principles of virtual work (P.V.W.) -- 1.2 Work function and potential energy -- 1.3 Total potential energy -- 1.4 Application of P.V.W. to generate differential equations for axial member -- 1.5 Principles of stationary total potential energy (P.S.T.P.E.) and trigonometric series for beam bending -- 1.6 Principle of virtual complementary energy (P.V.C.E.) -- 1.6.1 Castiglianon's theorem of deflections -- 1.7 Torsion of a rectangular section bar -- Problems -- Bibliography -- 2 Direct methods -- 2.1 Galerkin method (G.M.) -- 2.1.1 Boundary value problems -- 2.1.2 Assessment of accuracy -- 2.2 Rayleigh ritz method (R.R.M.) -- 2.3 Examples using the P.S.T.P.E. with non-trigonometric coordinate functions -- 2.4 Case studies for bar and beam problems under different loading and support conditions -- 2.4.1 Bar problem by Galerkin's method using polynomial assumption -- 2.4.2 Beam under uniformly distributed load by using a higher order polynomial deflected shape -- 2.4.3 Cantilever beam under uniformly varying load -- 2.4.4 A cantilever beam under a concentrated load at the free end -- 2.4.5 Torsion of rectangular section using G.M -- 2.4.6 Application of energy methods to Lambda frame -- Problems -- 3 Application of energy methods to plate problems -- 3.1 Plate bending -- 3.2 Plate stretching -- 3.3 Buckling of thin plates using energy method -- 3.3.1 Inelastic buckling -- 3.3.2 Pure shear -- 3.4 Application of Galerkin's method G.M. to plate bending -- 3.5 Kantorovich method -- 3.6 Application of Kantorovich's method to plate bending -- Problems -- Bibliography -- 4 Energy methods in vibrations -- 4.1 Rayleigh's method -- 4.2 Rayleigh's energy theorem (R. Principle).
4.3 Rayleigh Ritz method (modified Ritz method) -- 4.4 Plate applications -- 4.4.1 Rayleigh's method -- 4.4.2 Ritz method -- 4.4.3 Galerkin-Vlasov method -- 4.5 Application to the governing differential equation of plates -- 4.5.1 Rayleigh-Ritz -- 4.5.2 Galerkin's method -- Problems -- Bibliography -- II. Finite Element Method -- 5 Introduction to finite element method: bar and beam applications -- 5.1 Bar extension -- 5.2 Equivalent nodal forces of the axially distributed loading -- 5.3 Temperature effects-application to axially loaded problems -- 5.4 Application to the beam bending -- 5.5 Inclined bar element -- Problems -- Bibliography -- 6 Two-dimensional problems: application of plane strain and stress -- 6.1 Two-dimensional modeling: triangular elements -- 6.1.1 Constant strain triangle element -- 6.1.2 Loading conditions -- 6.2 Derivation of the 4-node quadrilateral element, formulation of the element equations -- 6.3 Parallelogramic element -- Problems -- Bibliography -- 7 Torsion problem -- 7.1 Total potential energy -- 7.2 Iso-parametric formulation of torsion problem: triangular element -- Problems -- Bibliography -- 8 Axisymmetric elasticity problems -- 8.1 Geometrical description -- 8.2 Three nodes triangular element -- 8.3 Representation of the applied forces as an equivalent nodal forces -- 8.3.1 Body force -- 8.3.2 Rotating bodies -- 8.3.3 Surface traction -- Problems -- Bibliography -- 9 Application of finite element method to three-dimensional elasticity problems -- 9.1 Three-dimensional elasticity relations -- 9.2 8-Node hexahedral element -- 9.3 Steps of formulation -- 9.4 Example of parallelopiped element -- 9.5 Tetrahedron element -- 9.5.1 Element description and element stiffness [k]e determination -- 9.5.2 Equivalent nodal forces -- 9.5.3 System stiffness and load vector -- Problems -- Bibliography.
10 Application of finite element to the vibration problems -- 10.1 General -- 10.2 Application to axial vibration of a bar -- 10.3 Equation of motion -- 10.3.1 Mode shapes determination -- 10.3.2 Orthogonality of mode of vibration -- 10.4 Application to transverse vibration of beams -- 10.5 Constant strain element -- 10.6 Quadrilateral elements -- 10.7 Axisymmetric triangular element -- 10.8 Consistent element mass matrix for the 8-nodes solid element -- 10.9 Consistent mass matrix for a tetrahedron element -- Problems -- Bibliography -- 11 Steady state heat conduction -- 11.1 Steady-state heat flows -- 11.2 Boundary conditions -- 11.3 Derivation of equilibrium equations -- 11.4 Application of three nodes constant strain triangular element -- 11.4.1 Determination of heat conduction matrices [k]cond -- 11.4.2 Determination of boundary convection matrix -- 11.4.3 Determination of boundary convection vector Qcv -- 11.4.4 Determination of applied heat vector Qb -- 11.4.4.1 Heat conduction matrices determination -- 11.4.4.2 Convection matrix determination -- 11.4.4.3 Determination of heat flow -- 11.5 4-Node quadrilateral element -- Problems -- Bibliography -- 12 Shape function determinations and numerical integration -- 12.1 One-dimensional formulations -- 12.1.1 Polynomial assumption -- 12.1.2 Lagrange interpolation -- 12.2 Two-dimensional applications -- 12.2.1 Triangular element -- 12.2.2 Shape functions in terms of area coordinates -- 12.2.3 Interpolation formula-quadrilateral elements -- 12.2.4 9-Node Lagrangian element -- 12.2.5 12-Node serendipity element -- 12.2.6 8-Node serendipity element -- 12.2.7 Superposition theory -- 12.3 Convergence criteria -- 12.4 Three dimensions of pentahedral element -- 12.4.1 Intrinsic 6-node element -- 12.4.2 Natural coordinates -- 12.4.3 Higher-order element: the 15-node serendipity element.
12.4.4 18-Node Lagrangian element -- 12.4.5 Serendipity elements -- 12.4.6 Tetrahedral elements -- 12.4.6.1 4-Node tetrahedral element -- 12.4.6.2 Higher-order elements in terms of volume coordinates -- 12.5 Numerical integration -- 12.5.1 Gaussian quadrature formula -- 12.5.2 Newton's _Cotes quadrature rule -- 12.5.3 Gauss-Legendre quadrature -- 12.5.4 Arithmetic evaluation -- 12.5.5 Numerical integration in 2D -- 12.5.6 Integration in triangular numerical -- 12.5.7 Numerical integration in 3D elements -- Problems -- Bibliography -- 13 Higher-order isoparametric formulation -- 13.1 Isoparametric element-thin plate bending element -- 13.1.1 8-Node isoparametric element -- 13.1.2 Strain-displacement relationship [B] -- 13.1.2.1 Element stiffness matrix -- 13.1.2.2 Element mass matrix -- 13.1.2.3 Equivalent nodal forces -- 13.1.3 Assembly of system equations -- 13.1.4 Strain and stress calculations -- 13.2 General shell element -- 13.3 Axisymmetric solid under axisymmetric loading -- 13.4 Laminated composite plates -- 13.4.1 Stress-strain relations for anisotropic material -- 13.4.2 Stress-strain relations for plate bending in an orthotropic -- 13.4.3 Strain and stress variations in a lamina -- 13.4.4 Resultant laminate forces and moments -- 13.4.5 Symmetric laminate -- 13.4.6 Antisymmetric laminates -- 13.4.6.1 Antisymmetric cross-ply laminates -- 13.4.6.2 Antisymmetric angle-ply laminates -- 13.4.7 Higher shear deformation theory -- 13.4.8 F.E. modeling using the 9-node Lagrangian quadrilateral isoparametric element -- 13.4.8.1 Formulation -- 13.4.8.2 Element stiffness matrix [k]e -- 13.4.8.3 Element mass matrix [m]e -- Problems -- Bibliography -- 14 Finite element program structures -- 14.1 Introduction -- 14.2 Structure of the F.E. process, static analysis -- 14.3 Flow chart of the subroutine input's DATA.
14.4 Flow chart of the subroutine shape functions and their derivatives -- 14.5 Flow chart of the Jacobian matrix subroutine -- 14.6 Flow chart of the subroutine [BM] matrix -- 14.7 Flow chart of subroutine [DM] -- 14.8 Flow chart of subroutine [DM]×[BM] -- 14.9 Flow chart of the element stiffness matrix subroutine [K] of size (NDFE, NDFE) -- 14.10 Flow chart of the assembly subroutine of the global stiffness matrix [KG] -- 14.11 Global load vector [FG] -- 14.11.1 Flow chart of the subroutine parabolic -- 14.11.2 Flow chart of uniform pressure subroutine -- 14.11.3 Flow chart of the body force subroutine -- 14.11.4 Flow chart of the concentrated loading subroutine -- 14.11.5 Flow chart of the thermal loading -- 14.12 Application of BCs flow chart -- 14.13 Flow chart solution subroutine -- 14.14 Calculation of stresses -- 14.15 Element mass matrix -- 14.16 Free vibration -- Bibliography -- Appendix A: Review of typical framed structure 2-node elements -- A.1 Continuous beam element -- A.2 Plane truss element -- A.3 Plane frame element -- A.4 Grid element -- A.5 Space truss element -- A.6 Space frame element -- A.7 Rotating shaft element -- A.8 Torque rod element -- Appendix B: Penalty function -- Summary: Elimination Approach -- Appendix C: Analytical solution of equations of motion -- C.1 Uncoupled equations of motion of undamped problems -- Appendix D: Numerical integration in time-dependent problems -- Index -- Back Cover.
Subject Structural dynamics.
Strains and stresses.
Finite element method.
Constructions -- Dynamique.
Contraintes (Mécanique)
Méthode des éléments finis.
stress.
strain.
Finite element method
Strains and stresses
Structural dynamics
Added Author Al-Waily, Muhannad, author.
Resan, Kadhim Kamil, author.
Other Form: Print version: Jweeg, Muhsin J. Energy methods and finite element techniques. Amsterdam : Elsevier, [2022] 0323886663 9780323886666 (OCoLC)1231957451
ISBN 9780323886512 (electronic bk.)
0323886515 (electronic bk.)
9780323886666
0323886663
Standard No. AU@ 000070046626
AU@ 000070062026
AU@ 000074361408

 
    
Available items only