Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Yang, Bo, author.

Title Behaviour of building structures subjected to progressive collapse / Bo Yang, Shao-Bo Kang, Kang Hai Tan, and Xu-Hong Zhou.

Publication Info. San Diego : Elsevier Science & Technology, 2022.
©2022.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (390 pages).
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Woodhead publishing series in civil and structural engineering
Woodhead Publishing series in civil and structural engineering.
Contents 1. Research Background; 2. Behaviour on steel beam-column joints under column removal scenarios; 3. Behaviour of composite steel beam-column joints under progressive collapse; 4. Force transfer mechanisms in composite frames against progressive collapse; 5. Structural resistance of reinforced concrete beam-column sub-assemblages under progressive collapse scenarios; 6. Force transfer mechanisms in reinforced concrete frames under progressive collapse; 7. Analytical model for compressive arch action and catenary action in reinforced concrete beams against progressive collapse; 8. Future work.
Intro -- Behaviour of Building Structures Subjected to Progressive Collapse -- Copyright -- Contents -- Preface -- Chapter 1: Research background -- 1.1. Iconic collapse events and definition of progressive collapse -- 1.2. Codes and guidelines for progressive collapse -- 1.3. Design approaches against progressive collapse -- 1.3.1. Indirect design approach -- 1.3.2. Direct design approach -- 1.3.2.1. Alternate path method -- 1.3.2.2. Enhanced local resistance method -- 1.4. Purpose of this book -- References -- Chapter 2: Behaviour of steel beam-to-column joints subject to removal of a single column -- 2.1. Experimental tests on bolted steel connections -- 2.1.1. Introduction -- 2.1.2. Experimental set-up and specimens -- 2.1.2.1. Experimental set-up -- 2.1.2.2. Instrumentation -- 2.1.2.3. Specimens -- 2.1.2.4. Material properties -- 2.1.3. Experimental results of simple connections (Specimens 1 to 4) -- 2.1.3.1. Specimen 1-WEB cleat -- 2.1.3.2. Specimen 2-Top and seat angle -- 2.1.3.3. Specimen 3-TSWA (8mm angle) -- 2.1.3.4. Specimen 4-Fin plate -- 2.1.3.5. Comparison of the simple connections -- 2.1.4. Experimental results of semi-rigid connections (Specimens 5 to 7) -- 2.1.4.1. Specimen 5-Flush end plate -- 2.1.4.2. Specimen 6-Extended end plate -- 2.1.4.3. Specimen 7-TSWA (12mm angle) -- 2.1.4.4. Comparison of the semi-rigid connections -- 2.1.5. Practical implications of the experimental results -- 2.1.6. Introduction -- 2.1.7. Experimental set-up and specimens -- 2.1.7.1. Experimental set-up -- 2.1.7.2. Test specimens -- 2.1.8. Experimental results -- 2.1.8.1. Web cleat connections -- 2.1.8.2. Top and seat angle connections -- 2.1.8.3. TSWA connections -- 2.2. Numerical modelling of steel beam-to-column joints -- 2.2.1. Introduction -- 2.2.2. Finite element simulation -- 2.2.2.1. Solution strategy -- 2.2.2.2. Material properties.
2.2.2.3. Finite element modelling -- 2.2.3. Comparison between finite element models and experimental results -- 2.2.3.1. Web cleat connection test -- 2.2.3.2. Fin plate connection test -- 2.2.3.3. TSWA (8mm) connection test -- 2.2.3.4. Flush end plate connection test -- 2.2.3.5. Extended end plate connection test -- 2.2.3.6. TSWA (12mm) connection test -- 2.2.4. Parametric analyses -- 2.2.4.1. Web cleat connections -- 2.2.4.2. Fin plate connections -- 2.2.4.3. Flush end plate connections -- 2.2.4.4. TSWA (12mm) connections -- 2.2.5. Practical implications of the simulation results -- 2.3. Mechanical modelling of bolted-angle connections under tension -- 2.3.1. Introduction -- 2.3.2. Experimental programme -- 2.3.2.1. Experimental specimens -- 2.3.2.2. Test procedure -- 2.3.3. Experimental results -- 2.3.3.1. Deflection history -- 2.3.3.2. Failure modes -- 2.3.3.3. Design parameters -- 2.3.4. Development of a mechanical model of bolted-angle connections -- 2.3.4.1. General -- 2.3.4.2. Development of the mechanical model -- 2.3.5. Development of a component-based model of bolted-angle connections -- 2.3.5.1. General -- 2.3.5.2. Comparison with experimental results -- 2.3.6. Frame analyses -- 2.3.6.1. Discussion on the frame and joint models -- 2.3.6.2. Discussion about loading methods -- 2.3.6.3. Discussion about the influence of horizontal restraint stiffness -- 2.4. Summary and conclusions -- 2.4.1. Experimental tests of different types of bolted steel beam-to-column joints -- 2.4.2. Additional experimental tests of bolted-angle beam-to-column joints -- 2.4.3. Numerical analyses of steel beam-to-column joints -- 2.4.4. Mechanical modelling of bolted-angle connections under tension -- References -- Chapter 3: Progressive collapse of composite beam-to-column joints under central column removal scenarios: Experiments and c.
3.1. Test set-up and specimens -- 3.1.1. Test set-up -- 3.1.2. Instrumentation -- 3.1.3. Test specimens -- 3.1.4. Material properties -- 3.2. Experimental results -- 3.2.1. Specimen M-W-9 -- 3.2.2. Specimen M-SW-11 -- 3.2.3. Specimen M-F-12 -- 3.2.4. Specimen S-W-9 -- 3.2.5. Specimen S-F-12 -- 3.3. Discussion about the experimental results -- 3.3.1. Comparison between web cleat and strengthened web cleat connections -- 3.3.2. Effect of composite slab -- 3.3.3. Measurement of strain -- 3.4. Component-based modelling of composite beam-to-column joints -- 3.4.1. Introduction to the component properties -- 3.4.2. Simulation of the tests using the component-based models -- 3.5. Frame analyses -- 3.5.1. Discussion about the frame and joint models -- 3.5.2. Effects of reinforcement ratios, profile decking, and composite slabs -- 3.5.3. Dynamic effect -- 3.6. Conclusions -- References -- Chapter 4: Force transfer mechanisms in composite frames against progressive collapse -- 4.1. Behaviour of composite frames with different boundary conditions against progressive collapse -- 4.1.1. Introduction -- 4.1.2. Experimental programme on composite frames -- 4.1.2.1. Design of specimen -- 4.1.2.2. Experimental setup -- 4.1.2.3. Material properties -- 4.1.3. Experimental results -- 4.1.3.1. Internal composite frames -- 4.1.3.2. External composite frames -- Specimen E-W-MT -- Specimen E-F-MT -- Behaviour of side columns -- 4.1.3.3. Composite frames with out-of-plane rotation -- Specimen O-W-MT -- Specimen O-F-MT -- Out-of-plane load at central joint -- 4.1.4. Discussions on experimental results -- 4.1.4.1. Influence of additional reinforcement in composite slab -- 4.1.4.2. Influence of boundary conditions -- 4.1.4.3. Influence of out-of-plane restraint -- 4.1.5. Numerical simulations of composite frames.
4.2. Design procedure of composite steel frames against progressive collapse -- 4.2.1. Introduction -- 4.2.2. Design recommendations for composite steel frames against progressive collapse -- 4.2.3. General design procedure for composite steel frames against progressive collapse -- 4.2.4. Dynamic effect considered by energy balance method -- 4.2.5. Worked example for composite steel frames against progressive collapse -- 4.2.5.1. Prototype structure -- 4.2.5.2. ABAQUS analytical model -- 4.2.5.3. Analytical procedure -- 4.3. Summary and conclusions -- References -- Chapter 5: Structural resistance of precast concrete beam-to-column substructures under progressive collapse scenarios -- 5.1. Experimental tests of PC beam-to-column substructures under the removal of a middle column -- 5.1.1. Experimental programme -- 5.1.1.1. Prototype structure -- 5.1.1.2. Design of specimens -- 5.1.1.3. Experimental setup -- 5.1.1.4. Instrumentations -- 5.1.2. Material properties -- 5.1.3. Experimental results of substructures -- 5.1.3.1. Load-deflection history of beam-to-column substructures -- 5.1.3.2. Resistances of beam-to-column substructures -- 5.1.3.3. Components of vertical load -- 5.1.3.4. Rotational capacities of beam-to-column substructures -- 5.1.3.5. Failure modes and crack patterns of precast beams -- 5.1.3.6. Horizontal shear transfer between precast beam units and concrete topping -- 5.1.3.7. Strains of beam longitudinal reinforcing bars -- 5.1.4. Discussions and suggestions -- 5.2. Experimental study on substructures with engineered cementitious composites (ECC) subjected to column removal -- 5.2.1. Experimental programme on substructure specimens -- 5.2.1.1. Specimen design -- 5.2.1.2. Material properties -- 5.2.2. Resistances of beam-to-column substructure specimens -- 5.2.2.1. Effect of ECC -- 5.2.2.2. Effect of reinforcing bar detailing.
5.2.2.3. Effect of top reinforcement ratios -- 5.2.2.4. Influence of bottom reinforcement ratios -- 5.2.3. Cracking patterns and failure modes of substructures -- 5.2.4. Horizontal reaction forces and bending moments -- 5.2.5. Deflection capacities of beam-to-column substructures -- 5.2.6. Local rotations in the plastic hinge region -- 5.2.7. Interactions between steel reinforcing bars and ECC -- 5.3. Conclusions -- References -- Further reading -- Chapter 6: Force transfer mechanisms in precast concrete frames under progressive collapse -- 6.1. Experimental tests on precast concrete frames -- 6.1.1. Experimental programme -- 6.1.1.1. Frame design and detailing -- 6.1.1.2. Test setup -- 6.1.1.3. Instrumentation -- 6.1.2. Material properties -- 6.1.3. Experimental results of precast concrete frames -- 6.1.3.1. Load-deflection curves -- 6.1.3.2. Influence of reinforcement detailing on frame behaviour -- 6.1.3.3. Influence of boundary conditions on frame behaviour -- 6.1.3.4. Pseudo-static resistances of precast concrete frames -- 6.1.3.5. Load distributions of horizontal reaction forces to the support -- 6.1.3.6. Crack patterns and failure modes of precast beams -- 6.1.3.7. Behaviour of side columns and joints -- 6.1.3.8. Variation of steel strains in beams and columns -- 6.2. Experimental study on exterior precast concrete frames -- 6.2.1. Experimental programme -- 6.2.1.1. Specimen design and detailing -- 6.2.1.2. Material properties -- 6.2.2. Experimental results of exterior frames -- 6.2.2.1. Load-deflection curves -- 6.2.2.2. Resistances of precast concrete frames -- 6.2.2.3. Failure modes of precast frames -- 6.2.2.4. Lateral deflections of side columns -- 6.2.2.5. Shear strength of beam-to-column joints -- 6.2.2.6. Flexural strength of side columns subjected to horizontal tension -- 6.2.2.7. Variation of steel strain in side joints -- 6.3. Conclusion.
Note Description based on publisher supplied metadata and other sources.
Subject Building failures.
Structural analysis (Engineering)
Constructions -- Effondrement.
Théorie des constructions.
structural analysis.
Building failures
Structural analysis (Engineering)
Added Author Kang, Shao-Bo, author.
Tan, Kang Hai, author.
Zhou, Xu-Hong, author.
Other Form: Print version: Yang, Bo Behaviour of Building Structures Subjected to Progressive Collapse San Diego : Elsevier Science & Technology, c2022
Original 0128222670 9780128222676 (OCoLC)1258780116
ISBN 9780128222683 (electronic bk.)
0128222689 (electronic bk.)
9780128222676
0128222670
9780128222676
Standard No. AU@ 000071341247
UKMGB 020528566
AU@ 000071979453

 
    
Available items only