Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book
Author Koncar, Vladan, author.

Title Smart textiles for in situ monitoring of composites / Vladan Koncar.

Publication Info. Duxford : Woodhead Publishing, [2019]
©2019

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Textile Institute book
Textile Institute book series.
Note Online resource; title from PDF title page (EBSCO, viewed November 5, 2018)
Bibliography Includes bibliographical references and index.
Summary Smart Textiles for in situ Monitoring of Composites proposes a 'smart textile' approach to help solve the problem of real-time monitoring of the structural health of composites. The book combines textiles, composites and structural health monitoring knowledge to present an integrated approach to the deployment of smart textiles to monitor failure modes in composite materials. It introduces the theory of smart textiles for monitoring and measurement applications, describes established and developing techniques and approaches for using smart textiles for in-situ monitoring, and includes different fiber/matrix combinations and hybrid structures that are all presented using academic research and real-world case studies. As smart textiles are fitted with flexible adapted sensors and actuators that detect stress, deformation, temperature changes, light intensity, and other signals from the environment, this book is a timely resource on the topic.
Contents Front Cover -- Smart Textiles for In Situ Monitoring of Composites -- The Textile Institute Book Series -- Recently Published and Upcoming Titles in The Textile Institute Book Series -- Related Titles -- Smart Textiles for In Situ Monitoring of Composites -- Copyright -- Contents -- General introduction -- Smart textiles -- References -- Further reading -- 1 -- Smart textiles for monitoring and measurement applications -- 1.1 Introduction -- 1.2 Smart textiles -- 1.3 Sensors-definitions and classifications -- 1.3.1 Mechanical sensors-general definitions -- 1.3.1.1 Strain gauges -- 1.3.2 Capacitive sensors -- 1.3.3 Piezoelectric sensors -- 1.3.4 Optical fibers based sensors -- 1.3.5 Textile strain gauges with mobile electrodes -- 1.3.6 Piezoresistive textile sensors-conductive polymer composites based -- 1.3.6.1 Electrical properties and percolation phenomenon -- 1.3.6.2 Conductive polymer composite behavior in the presence of deformations (elongation and pressure) -- 1.3.7 Mechanical properties of conductive polymer composites -- 1.3.7.1 Microruptures phenomenon of piezoresistive coatings -- 1.4 Connectors -- 1.4.1 Basic definitions -- 1.4.2 Washability and reliability of connecting devices -- 1.4.2.1 Washing test -- 1.4.2.2 Washability of silver conductive thread -- 1.4.2.3 Washability of nickel-plated copper wire -- 1.4.2.4 Washability of silver-plated silver copper tinsel -- 1.4.2.5 Washability of interconnections -- 1.4.3 Samples for LATEX-based barrier -- 1.4.3.1 Textiles with three LEDs -- 1.4.3.2 Textiles with LEDs array -- 1.4.4 Washing tests -- 1.4.4.1 Washability of the textiles with three LEDs -- 1.4.4.2 Washability of the textiles with LEDs array -- 1.4.5 Conclusion -- 1.5 Conductive polymers, fibers, and structures -- 1.5.1 Intrinsically conductive polymers -- 1.5.1.1 Poly[3,4-(ethylenedioxy)thiophene].
1.5.1.2 Poly[3,4-(ethylenedioxy)thiophene]-compl-poly(4-vinylbenzenesulfonic acid) -- Application-Polypyrrole -- Application-Polyaniline -- Application-PEDOT:PSS (PEDOT-compl-PSS) -- Secondary dopant -- 1.5.2 Carbon fibers piezoresistivity -- 1.5.3 Sensors based on conductive textiles structures -- 1.5.3.1 Comparative studies of different types of yarns and structures -- 1.5.3.2 Sensory material deposited by printing on fabrics -- 1.5.3.3 Implementation by in situ polymerization -- 1.5.3.4 Piezoresistive coating compounds -- 1.5.3.5 Fibrous piezoresistive strain gauges -- 1.5.4 Fibrous sensors based on piezoresistive filaments -- 1.5.5 Conclusion -- 1.6 Materials and sensors for glass fibers based composites monitoring -- 1.6.1 Preparation of the aqueous dispersion of conducting polymer complex, Poly[3,4-(ethylenedioxy)thiophene-compl-poly(4-vinylbe ... -- 1.6.2 Textile sensors development steps -- 1.6.3 Electrical resistance detection of copper wires -- 1.6.4 Textile sensors production according to percolation threshold final study -- 1.6.5 Design and production of laboratory equipment for performing new coating method by using metal rollers onto the yarn and pr ... -- 1.6.6 Procedure conditions determination for performing new coating method by using metal rollers onto the yarn -- 1.6.7 Characterization of textile sensors before insertion in textile preforms-methods used -- 1.6.7.1 Scanning electron microscopy with energy dispersive spectroscopy of yarns and textile sensors -- 1.6.7.2 Tensile testing of yarns for textile sensors preparation -- 1.6.7.3 Electromechanical characterization of produced textile sensors -- 1.6.7.4 Conductivity dependence of textile sensors on climatic conditions -- 1.6.7.5 Consolidation of 2D textile preforms and textile sensors connection with measuring instrument.
1.6.7.6 Electromechanical characterization of textile reinforced 2D thermoplastic composites with integrated textile sensors -- 1.6.7.7 Characterization of textile reinforced 2D thermoplastic composites with integrated textile sensors-tomography analysis -- 1.6.7.8 Thermal properties determination -- 1.6.7.9 Thermogravimetric Analysis -- 1.6.7.10 Microscale Combustion Calorimetry analysis -- 1.6.7.11 Limiting Oxygen Index -- 1.6.7.12 Interface phenomena of sensor yarns and related textile reinforced 2D thermoplastic composites -- 1.6.7.13 Adhesion parameters at the interface -- References -- Further reading -- 2 -- Composites and hybrid structures -- 2.1 Composites-terms and definitions -- 2.1.1 Introduction -- 2.1.2 Laminate fiber reinforced composites -- 2.2 Textile reinforced composites -- 2.2.1 Woven fiber reinforced composites -- 2.2.1.1 2D woven fabric -- 2.2.1.2 2D weaving process -- 2.2.1.3 Multilayered (or 3D woven) fabric -- 2.2.1.4 3D weaving process -- 2.2.1.5 Multiaxis weaving process -- 2.2.1.6 Two dimensional multiaxis weaving -- 2.2.1.7 Multilayer multiaxis weaving -- 2.2.1.8 Polar multilayer multiaxis weaving -- 2.2.2 Knitted composites -- 2.2.2.1 Noncrimp fabrics -- 2.2.3 Braided composites -- 2.2.4 Z-pinned composites -- 2.3 Outlook-composite structures -- 2.4 Reinforcing fibers -- 2.4.1 Glass fibers -- 2.4.1.1 Sheet molding compound/bulk molding compound -- 2.4.1.2 Open mold/open processes -- 2.4.1.3 Resin transfer molding -- 2.4.1.4 Continuous processing -- 2.4.1.5 Glass mat thermoplastic/long fibers thermoplastic -- 2.4.2 Carbon fibers -- 2.4.3 Aramid fibers -- 2.4.3.1 Metaaramid fiber -- 2.4.3.2 Para-aramid fiber -- 2.4.4 Natural fibers -- 2.5 Matrices -- 2.5.1 Thermosetting matrices -- 2.5.1.1 Unsaturated polyester resins -- 2.5.1.2 Phenolic resins -- 2.5.1.3 Epoxy resins -- 2.5.2 Thermoplastic matrices -- 2.5.2.1 Polyolefin.
2.5.2.2 Polyketone resins -- 2.5.2.3 Polyether imide -- 2.5.2.4 Polyarylene sulfide resins -- 2.5.2.5 Bio-based resins -- 2.6 Failure mechanisms in composites -- 2.6.1 Damage -- 2.6.2 Defect/flaw -- 2.6.3 Failure -- 2.6.4 Performance -- 2.6.5 Health -- 2.6.6 Health monitoring -- 2.6.7 Structural identification -- 2.6.8 Structural health monitoring -- 2.7 Hybrid structures, production methodology and principles, state of the art -- 2.8 Hybrid structures-bonding issues-innovative joining techniques -- 2.8.1 Continuous laser welding -- 2.8.2 Friction welding -- 2.8.3 Magnetic pulse welding -- 2.8.4 Electromagnetic driven self-piercing riveting -- 2.8.5 Electron beam welding -- 2.9 Conclusion -- References -- Further Reading -- 3 -- Structural health monitoring of composite structures -- 3.1 Health monitoring definitions -- 3.2 State of the art of monitoring techniques -- 3.2.1 Drapability assessment of composite preforms -- 3.2.2 Biaxial tensile testing of flat structures -- 3.2.3 Crash tests -- 3.2.4 Split Hopkinson bar test-characterization under dynamic conditions -- 3.3 Characterization of textile sensors before insertion in textile preforms -- 3.3.1 Textile sensors production according to percolation threshold final study -- 3.3.2 Results-viscosity determination of final conductive dispersion used -- 3.3.3 Results and discussion-tensile properties of yarns -- 3.3.4 Results and discussion-electromechanical properties of textile sensors -- 3.4 Characterization of textile sensors after insertion in textile preforms -- 3.4.1 Textile sensors integration during weaving of 2D fabric, consolidation pretest analysis -- 3.4.2 Results-GF/PP composites with integrated GF/PP sensors -- 3.4.3 GF/PP composites with integrated GF sensors -- 3.4.4 GF/PA66 composites with integrated GF/PA66 or GF sensors -- 3.5 Results and discussion-interface phenomena.
3.6 Results and discussion-tomography analysis of textile reinforced 2D thermoplastic composites with integrated textile sensors -- 3.7 Results and discussion-electrical resistance dependence of textile sensors on climatic conditions -- 3.8 Results-SEM and EDS analysis of yarns -- 3.9 Results and discussion-thermal properties of yarns and textile reinforced 2D thermoplastic composites with integrated senso ... -- 3.9.1 Thermogravimetric analysis -- 3.9.2 Results and discussion-microscale combustion calorimetry analysis -- 3.9.3 Results and discussion-limiting oxygen index -- 3.10 Toward wireless structural health monitoring -- 3.11 Predictive maintenance concept -- 3.12 Conclusion -- References -- Further reading -- 4 -- Structural health monitoring of processes related to composite manufacturing -- 4.1 Study case 1, interlock weaving process monitoring -- 4.1.1 Design, production, and characterization of sensory yarns -- 4.1.2 Preparation of PEDOT:PSS dedicated to yarns functionalization -- 4.1.2.1 Clevios CPP105D -- 4.1.2.2 Polyvinilic alcohol -- 4.1.2.3 Coating-setup of the process -- 4.1.2.4 Coating method on films -- 4.1.2.5 Coating method on yarns -- 4.1.3 Production of sensors -- 4.1.3.1 General shape -- 4.1.3.2 Glass fibers yarn -- 4.1.3.3 Precoating with polyvinilic alcohol -- 4.1.3.4 Connection yarns -- 4.1.3.5 Sensors protection -- 4.1.4 Tensile testing machine (MTS insight 10) -- 4.1.4.1 Yarns testing procedure -- 4.1.5 Data recording system -- 4.1.5.1 Measurement method-multimeter Keithley 3706 with data acquisition card 3724 -- 4.1.6 Data treatment -- 4.1.6.1 Signal filtering -- 4.1.6.2 Sensors gauge factor calculation -- 4.1.7 Tests and characterization -- 4.1.7.1 Electrical resistivity and computation -- 4.1.7.2 Percolation threshold -- 4.1.8 Mechanical behavior of glass fibers -- 4.1.9 Characterization of coated layers.
Subject Fibrous composites.
Electronic textiles.
Composites à fibres.
Textiles électroniques.
fibrous composite.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Electronic textiles
Fibrous composites
Fibres textiles synthétiques.
Textiles intelligents.
Composites.
ISBN 9780081023099 (electronic bk.)
008102309X (electronic bk.)
0081023081
9780081023082
9780081023082
Standard No. AU@ 000064511056
AU@ 000065067052

 
    
Available items only