Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
Electronic Book

Title Underground sensing : monitoring and hazard detection for environment and infrastructure / edited by Sibel Pamukcu, Liang Cheng.

Publication Info. London : Academic Press, [2018]
©2018

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references and index.
Note Vendor-supplied metadata.
Summary Underground Sensing: Monitoring and Hazard Detection for Environment and Infrastructure brings the target audience the technical and practical knowledge of existing technologies of subsurface sensing and monitoring based on a classification of their functionality. In addition, the book introduces emerging technologies and applications of sensing for environmental and geo-hazards in subsurface - focusing on sensing platforms that can enable fully distributed global measurements. Finally, users will find a comprehensive exploration of the future of underground sensing that can meet demands for preemptive and sustainable response to underground hazards. New concepts and paradigms based on passively powered and/or on-demand activated, embeddable sensor platforms are presented to bridge the gap between real-time monitoring and global measurements.
Contents Front Cover -- Underground Sensing -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Introduction and Overview of Underground Sensing for Sustainable Response -- 1.1 Underground Sensing for Environmental, Economic, and Social Sustainability -- 1.2 Sustainability and Indicators -- 1.3 Overview of Underground Sensing and Monitoring -- 1.3.1 Current Technologies for Underground Environmental and Geotechnical Monitoring -- 1.3.2 Environmental Underground Sensing and Monitoring -- 1.3.2.1 Overview -- 1.3.2.2 Wireless Underground Sensors and Networks -- Precision Agriculture -- Soil Water Distribution -- Plumes and Groundwater -- Land ll Gas -- Pipeline Leakage -- 1.3.3 Geotechnical Underground Sensing and Monitoring -- Pipelines -- Mines and Underground Spaces -- Piles -- Tunnel -- Hybrid Other Applications -- References -- 2 Acoustic, Electromagnetic and Optical Sensing and Monitoring Methods -- 2.1 Principles of Acoustic and Electromagnetic Sensing -- 2.1.1 Introduction -- 2.1.1.1 Conventional Underground Measurement Methods -- 2.1.1.1.1 Physical Field Methods -- 2.1.1.1.2 Acoustic Methods -- 2.1.1.1.3 Electrical and Electromagnetic Wave Methods -- 2.1.1.2 Conventional Devices Used for Underground Measurements -- 2.1.2 Acoustical Measurement Methods-AMM -- 2.1.2.1 Direct Detection Method -- 2.1.2.2 Acoustic Emission (AE) and Acoustic Source Location (ASL) Method -- 2.1.2.3 Re ection Seismology -- 2.1.2.4 Acoustic-to-Seismic (A/S) Coupling -- 2.1.3 Electric and Electromagnetic Methods -- 2.1.3.1 Electrical Resistivity Surveys (ERS) -- 2.1.3.2 Electromagnetic Induction (EMI) Method -- 2.1.3.3 Ground-Penetrating Radar -- 2.1.4 Optical Sensing Technologies Used in Underground Measurement -- 2.1.4.1 Vibration Measurement -- 2.1.4.1.1 Principles of Fiber Optic Vibration Sensing -- 2.1.4.1.2 Distributed Sensing of Vibration.
2.1.4.1.3 Remote Sensing With Laser Doppler Technology -- 2.1.4.2 Strain/Stress Measurement -- 2.1.4.2.1 FBG for Strain Sensing -- 2.1.4.2.2 BOTDR for Strain/Stress Sensing -- 2.1.4.3 Temperature Measurement -- 2.1.4.3.1 FBG for Temperature Sensing -- 2.1.4.3.2 Raman Scattering Based Fiber-Optic Temperature Sensing -- 2.1.4.4 Gas Detection -- 2.1.4.5 Examples of Practical Applications of Optical Sensor Technologies in Underground Measurements -- 2.1.4.5.1 Earthquake Observation -- 2.1.4.5.2 Mineral Exploration -- 2.1.4.5.3 Underground Pipeline Monitoring -- 2.1.4.5.4 Geological Disaster Warning -- 2.1.4.5.5 Coal Mine Safety Monitoring -- 2.1.5 Conclusions -- References -- 2.2 GPR Technologies for Underground Sensing -- 2.2.1 Introduction to Ground Penetrating Radar -- 2.2.2 Operating Mechanism of GPR -- 2.2.2.1 GPR Signal Propagation in Dielectric Materials -- 2.2.2.2 GPR Sensing Resolution -- Range Resolution -- Cross-Range Resolution -- 2.2.3 GPR System Design -- 2.2.3.1 Pulse Generator -- 2.2.3.2 GPR Antenna -- Element Antenna -- Frequency Independent Antenna -- TEM Horn Antenna -- 2.2.4 GPR Image Processing -- 2.2.4.1 Vibration Effect Correction -- 2.2.4.2 Radio-Frequency Interference Reduction -- 2.2.4.3 Clutter Removal -- 2.2.4.4 Feature Extraction -- 2.2.4.5 Statistical Analysis for Singular Feature Detection -- Other GPR Design Technologies -- References -- 3 Geotechnical Underground Sensing and Monitoring -- 3.1 Introduction -- 3.2 Monitoring Strain -- 3.2.1 Vibrating Wire (VW) Strain Gages -- 3.2.1.1 Operating Principle of VW Gages -- 3.2.1.2 Commercial Vibrating Wire Strain Gages -- 3.2.2 Foil Strain Gages -- 3.2.2.1 Operating Principle of Foil Gages -- 3.2.2.2 Commercial Foil Strain Gages -- Gage Series -- Self-Temperature Compensation -- Gage Pattern -- Gage Length -- Gage Resistance -- Options.
3.2.2.3 Surface Preparation for Foil Strain Gages -- 3.2.2.4 Bonding of Foil Strain Gages -- 3.2.2.5 Attaching Lead-wires and Protection of Foil Strain Gages -- 3.2.2.6 Wheatstone Bridge Circuit -- 3.2.2.7 Optimizing the Excitation of Foil Strain Gages -- 3.2.3 Fiber-Optic Strain Gages -- 3.2.4 Installation of Strain Gages -- 3.3 Monitoring Load -- 3.3.1 Electric Load Cells -- 3.3.2 Hydraulic Load Cells -- 3.3.3 Osterberg Load Cells -- 3.4 Monitoring Pressure -- 3.4.1 Monitoring of Piezometric Pressure -- 3.4.1.1 Pressure Terminology -- 3.4.1.2 Piezometric Measurements -- 3.4.1.3 Piezometric Pressure Transducers -- 3.4.1.4 Pneumatic Piezometers -- 3.4.1.5 Piezometric Time Lag -- 3.4.2 Monitoring of Total Stress (Total Earth Pressure) -- 3.5 Monitoring Deformation -- 3.5.1 Manual Methods -- 3.5.2 Linear Potentiometers -- 3.5.3 LVDT -- 3.5.4 Vibrating Wire Joint Meters -- 3.5.5 Rod Extensometers -- 3.5.6 Probe Extensometers -- 3.5.7 Slope Extensometers -- 3.5.8 Liquid Level Gages -- 3.5.9 Optical Methods -- 3.6 Monitoring Tilt -- 3.6.1 Measurement of Tilt -- 3.6.1.1 Electrolytic Tilt Sensors -- 3.6.1.2 Accelerometric Tilt Sensor -- 3.6.1.3 Vibrating Wire Tilt Sensors -- 3.6.1.4 MEMS Based Tilt Sensors -- 3.6.2 Tilt Beams -- 3.6.3 Inclinometers -- 3.6.3.1 Traversing Inclinometers -- 3.6.3.2 In-place Inclinometers -- 3.6.3.3 Shape Accelerometer Arrays (SAA) -- 3.7 Monitoring Vibration -- 3.7.1 Sensors for Monitoring Vibration -- 3.7.1.1 Geophones -- 3.7.1.2 Accelerometers -- 3.7.1.3 Microphones -- 3.7.1.4 Proximity Sensors -- 3.7.2 Installation of Geophones and Accelerometers -- 3.8 Common Measurement Errors -- 3.8.1 Notation -- 3.8.2 Conformance -- 3.8.3 Electric Noise -- 3.8.4 Drift -- 3.8.5 Signal Aliasing -- 3.8.6 Bias (Systematic) Errors -- 3.8.7 Precision (Random) Errors -- 3.8.8 Sampling Errors -- 3.8.9 Gross Errors -- 3.9 Sensor Speci cations.
3.9.1 Range -- 3.9.2 Sensitivity -- 3.9.3 Resolution -- 3.9.4 Linearity -- 3.9.5 Hysteresis -- 3.9.6 Precision (Repeatability) -- 3.9.7 Accuracy -- 3.10 Closing Comment -- Further Reading -- 4 Environmental Underground Sensing and Monitoring -- 4.1 Introduction -- 4.2 Overview of Conventional and Transitional Environmental Sensors -- 4.3 Wireless Sensor Networks for Environmental Sensing Applications -- 4.3.1 Background and Current State-of-the-Art -- 4.3.2 Recent Advances in WSN Hardware Suitable for Underground Environmental Applications -- 4.4 Fundamentals of WSN Supporting Environmental Applications: Advances and Open Issues -- 4.4.1 Sensor Network Deployment -- 4.4.2 Virtual Sensor Networks -- 4.4.3 Reliable Sensor Data Collection -- 4.5 Wireless Sensor Networks for Long-Term Monitoring of Contaminated Sites -- 4.5.1 WSN for Underground Plume Monitoring -- 4.5.2 Integrating WSN to Transport Models -- 4.5.3 Network Optimization -- 4.6 Wireless Sensor Networks for Remediation of Sites Contaminated With Organic Wastes -- 4.7 Wireless Sensor Networks for Carbon Leakage -- 4.8 Conclusions -- Acknowledgments -- References -- 5 EM-Based Wireless Underground Sensor Networks -- 5.1 Introduction -- 5.2 Soil as a Communication Media -- 5.3 Propagation in the Underground Channel -- 5.3.1 Two-Wave UG Channel Model -- 5.3.2 Three-Wave UG Channel Model -- Direct Wave -- Reflected Wave -- Lateral Wave -- 5.3.3 Impulse Response Analysis of the UG Channel -- Metrics for Impulse Response Characterization -- 5.3.4 Testbed Design for Impulse Response Parameters Analysis -- 5.3.5 UG Channel Impulse Response Parameters -- 5.3.5.1 Impact of Soil Moisture Changes on Impulse Response -- 5.3.5.2 Impact of Soil Texture -- 5.3.5.3 Impact of Operation Frequency -- 5.3.6 Impulse Response Model Validation Through Experiments.
5.4 Effects of Soil on Antenna and Channel Capacity -- Resonant Frequency of the UG Antenna -- Bandwidth of the UG Antenna -- Channel Capacity -- 5.5 Error Control -- Energy Ef ciency of FEC Codes -- Transmit Power Control -- 5.6 Network Connectivity -- Modeling Cluster Size Distribution in WUSN -- Communication Coverage Model -- WUSN Connectivity -- Energy Consumption Analysis -- Routing Using Neighbor Node -- A New Connectivity Approach -- 5.7 WUSN Testbeds and Experimental Results -- 5.7.1 Field Testbed -- 5.7.2 Results of WUSN Experiments -- Aboveground Experiments -- Software-De ned Radio Experiments -- 5.8 Conclusions -- References -- 6 Fiber-Optic Underground Sensor Networks -- 6.1 Distributed Fiber-Optic Strain Sensing for Monitoring Underground Structures -- Tunnels Case Studies -- 6.1.1 Introduction -- 6.1.2 Distributed Fiber-Optic Sensing (DFOS) Based on Brillouin Scattering -- Basic Principle -- BOTDR and BOTDA -- Temperature Compensated Strain -- Thermal Expansion of Concrete -- Cables -- 6.1.3 Case Study 1: Monitoring of a Sprayed Concrete Tunnel Lining at the Crossrail Liverpool Street Station -- Project Background -- Distributed Fiber-Optic Strain Sensor Installation -- Monitoring Regime and Data Analysis -- Results and Discussion -- 6.1.4 Case Study 2: Liverpool Street Station -- Royal Mail Tunnel -- Project Background -- Distributed Fiber-Optic Strain Sensor Installation -- Results and Discussion: Cross-Sectional Behavior -- Results and Discussion: Longitudinal Behavior -- Conclusions -- 6.1.5 Case Study 3: Monitoring of CERN Tunnels -- Project Background & -- Aim of Monitoring -- Installation of Fiber-Optic Sensors & -- Planned Monitoring Scheme -- Current Monitoring Data -- Conclusions & -- Future Work -- References -- 6.2 Fiber-Optic Sensor Networks: Environmental Applications -- 6.2.1 Introduction.
Subject Underground utility lines -- Safety measures.
Underground construction -- Safety measures.
Réseaux souterrains -- Sécurité -- Mesures.
Constructions souterraines -- Sécurité -- Mesures.
BUSINESS & ECONOMICS -- Real Estate -- General.
Underground construction -- Safety measures
Underground utility lines -- Safety measures
Added Author Pamukcu, Sibel, editor.
Cheng, Liang, editor.
Other Form: Print version: 0128031395 9780128031391 (OCoLC)973372266
ISBN 9780128031544 (electronic bk.)
0128031549 (electronic bk.)
9780128031391
0128031395
Standard No. AU@ 000061154937
CHNEW 001014590
GBVCP 1002873754

 
    
Available items only