Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Books/E-Docs

Title Applied thermodynamics of fluids [electronic resource] / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.

Imprint Cambridge : RSC Pub., c2010.

Copies

Location Call No. OPAC Message Status
 Axe ProQuest E-Book  Electronic Book    ---  Available
Description xxiii, 509 p. : ill.
Bibliography Includes bibliographical references and index.
Contents Machine generated contents note: ch. 1 Introduction / J. Peters -- References -- ch. 2 Fundamental Considerations / Cor J. Peters -- 2.1. Introduction -- 2.2. Basic Thermodynamics -- 2.2.1. Homogeneous Functions -- 2.2.2. Thermodynamic Properties from Differentiation of Fundamental Equations -- 2.3. Deviation Functions -- 2.3.1. Residual Functions -- 2.3.2. Evaluation of Residual Functions -- 2.4. Mixing and Departure Functions -- 2.4.1. Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables -- 2.4.2. Departure Functions with Temperature, Pressure and Composition as the Independent Variables -- 2.5. Mixing and Excess Functions -- 2.6. Partial Molar Properties -- 2.7. Fugacity and Fugacity Coefficients -- 2.8. Activity Coefficients -- 2.9. The Phase Rule -- 2.10. Equilibrium Conditions -- 2.10.1. Phase Equilibria -- 2.10.2. Chemical Equilibria -- 2.11. Stability and the Critical State -- 2.11.1. Densities and Fields -- 2.11.2. Stability.
2.11.3. Critical State -- References -- ch. 3 The Virial Equation of State / J. P. Martin Trusler -- 3.1. Introduction -- 3.1.1. Temperature Dependence of the Virial Coefficients -- 3.1.2. Composition Dependence of the Virial Coefficients -- 3.1.3. Convergence of the Virial Series -- 3.1.4. The Pressure Series -- 3.2. Theoretical Background -- 3.2.1. Virial Coefficients of Hard-Core-Square-Well Molecules -- 3.3. Thermodynamic Properties of Gases -- 3.3.1. Perfect-gas and Residual Properties -- 3.3.2. Helmholtz Energy and Gibbs Energy -- 3.3.3. Perfect-Gas Properties -- 3.3.4. Residual Properties -- 3.4. Estimation of Second and Third Virial Coefficients -- 3.4.1. Application of Intermolecular Potential-energy Functions -- 3.4.2. Corresponding-states Methods -- References -- ch. 4 Cubic and Generalized van der Waals Equations of State / Ioannis G. Economou -- 4.1. Introduction -- 4.2. Cubic Equation of State Formulation -- 4.2.1. The van der Waals Equation of State (1873) -- 4.2.2. The Redlich and Kwong Equation of State (1949).
4.2.3. The Soave, Redlich and Kwong Equation of State (1972) -- 4.2.4. The Peng and Robinson Equation of State (1976) -- 4.2.5. The Patel and Teja (PT) Equation of State (1982) -- 4.2.6. The α Parameter -- 4.2.7. Volume Translation -- 4.2.8. The Elliott, Suresh and Donohue (ESD) Equation of State (1990) -- 4.2.9. Higher-Order Equations of State Rooted to the Cubic Equations of State -- 4.2.10. Extension of Cubic Equations of State to Mixtures -- 4.3. Applications -- 4.3.1. Pure Components -- 4.3.2. Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions -- 4.3.3. Chemical Industry -- Polar and Hydrogen Bonding Fluids -- 4.3.4. Polymers -- 4.3.5. Transport Properties -- 4.4. Conclusions -- References -- ch. 5 Mixing and Combining Rules / Stanley I. Sandler -- 5.1. Introduction -- 5.2. The Virial Equation of State -- 5.3. Cubic Equations of State -- 5.3.1. Mixing Rules -- 5.3.2. Combining Rules -- 5.3.3. Non-Quadratic Mixing and Combining Rules -- 5.3.4. Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
5.4. Multi-Parameter Equations of State -- 5.4.1. Benedict, Webb, and Rubin Equation of State -- 5.4.2. Generalization with the Acentric Factor -- 5.4.3. Helmholtz-Function Equations of State -- 5.5. Mixing Rules for Hard Spheres and Association -- 5.5.1. Mixing and Combining Rules for SAFT -- 5.5.2. Cubic Plus Association Equation of State -- References -- ch. 6 The Corresponding-States Principle / James F. Ely -- 6.1. Introduction -- 6.2. Theoretical Considerations -- 6.3. Determination of Shape Factors -- 6.3.1. Other Reference Fluids -- 6.3.2. Exact Shape Factors -- 6.3.3. Shape Factors from Generalized Equations of State -- 6.4. Mixtures -- 6.4.1. van der Waals One-Fluid Theory -- 6.4.2. Mixture Corresponding-States Relations -- 6.5. Applications of Corresponding-States Theory -- 6.5.1. Extended Corresponding-States for Natural Gas Systems -- 6.5.2. Extended Lee-Kesler -- 6.5.3. Generalized Crossover Cubic Equation of State -- 6.6. Conclusions -- References -- ch. 7 Thermodynamics of Fluids at Meso and Nano Scales / Christopher E. Bertrand.
7.1. Introduction -- 7.2. Thermodynamic Approach to Meso-Heterogeneous Systems -- 7.2.1. Equilibrium Fluctuations -- 7.2.2. Local Helmholtz Energy -- 7.3. Applications of Meso-Thermodynamics -- 7.3.1. Van der Waals Theory of a Smooth Interface -- 7.3.2. Polymer Chain in a Dilute Solution -- 7.3.3. Building a Nanoparticle Through Self Assembly -- 7.3.4. Modulated Fluid Phases -- 7.4. Meso-Thermodynamics of Criticality -- 7.4.1. Critical Fluctuations -- 7.4.2. Scaling Relations -- 7.4.3. Near-Critical Interface -- 7.4.4. Divergence of Tolman's Length -- 7.5. Competition of Meso-Scales -- 7.5.1. Crossover to Tricriticality in Polymer Solutions -- 7.5.2. Tolman's Length in Polymer Solutions -- 7.5.3. Finite-size Scaling -- 7.6. Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation -- 7.6.1. Relaxation of Fluctuations -- 7.6.2. Critical Slowing Down -- 7.6.3. Homogeneous Nucleation -- 7.6.4. Spinodal Decomposition -- 7.7. Conclusion -- References -- ch. 8 SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo.
8.1. Introduction -- 8.2. Statistical Mechanical Theories of Association and Wertheim's Theory -- 8.3. SAFT Equations of State -- 8.3.1. SAFT-HS and SAFT-HR -- 8.3.2. Soft-SAFT -- 8.3.3. SAFT-VR -- 8.3.4. PC-SAFT -- 8.3.5. Summary -- 8.4. Extensions of the SAFT Approach -- 8.4.1. Modelling the Critical Region -- 8.4.2. Polar Fluids -- 8.4.3. Ion-Containing Fluids -- 8.4.4. Modelling Inhomogeneous Fluids -- 8.4.5. Dense Phases: Liquid Crystals and Solids -- 8.5. Parameter Estimation: Towards more Predictive Approaches -- 8.5.1. Pure-component Parameter Estimation -- 8.5.2. Use of Quantum Mechanics in SAFT Equations of State -- 8.5.3. Unlike Binary Intermolecular Parameters -- 8.6. SAFT Group-Contribution Approaches -- 8.6.1. Homonuclear Group-Contribution Models in SAFT -- 8.6.2. Heteronuclear Group Contribution Models in SAFT -- 8.7. Concluding Remarks -- References -- ch. 9 Polydisperse Fluids / Dieter Browarzik -- 9.1. Introduction -- 9.2. Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
9.3. Approaches to Polydispersity -- 9.3.1. The Pseudo-component Method -- 9.3.2. Continuous Thermodynamics -- 9.4. Application to Real Systems -- 9.4.1. Polymer Systems -- 9.4.2. Petroleum Fluids, Asphaltenes, Waxes and Other Applications -- 9.5. Conclusions -- References -- ch. 10 Thermodynamic Behaviour of Fluids near Critical Points / Mikhail A. Anisimov -- 10.1. Introduction -- 10.2. General Theory of Critical Behaviour -- 10.2.1. Scaling Fields, Critical Exponents, and Critical Amplitudes -- 10.2.2. Parametric Equation of State -- 10.3. One-Component Fluids -- 10.3.1. Simple Scaling -- 10.3.2. Revised Scaling -- 10.3.3. Complete Scaling -- 10.3.4. Vapour-Liquid Equilibrium -- 10.3.5. Symmetric Corrections to Scaling -- 10.4. Binary Fluid Mixtures -- 10.4.1. Isomorphic Critical Behaviour of Mixtures -- 10.4.2. Incompressible Liquid Mixtures -- 10.4.3. Weakly Compressible Liquid Mixtures -- 10.4.4. Compressible Fluid Mixtures -- 10.4.5. Dilute Solutions -- 10.5. Crossover Critical Behaviour -- 10.5.1. Crossover from Ising-like to Mean-Field Critical Behaviour.
10.5.2. Effective Critical Exponents -- 10.5.3. Global Crossover Behaviour of Fluids -- 10.6. Discussion -- Acknowledgements -- References -- ch. 11 Phase Behaviour of Ionic Liquid Systems / Cor J. Peters -- 11.1. Introduction -- 11.2. Phase Behaviour of Binary Ionic Liquid Systems -- 11.2.1. Phase Behaviour of (Ionic Liquid + Gas Mixtures) -- 11.2.2. Phase Behaviour of (Ionic Liquid + Water) -- 11.2.3. Phase Behaviour of (Ionic Liquid + Organic) -- 11.3. Phase Behaviour of Ternary Ionic Liquid Systems -- 11.3.1. Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) -- 11.3.2. Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) -- 11.3.3. Phase Behaviour of (Ionic Liquid + Water + Alcohol) -- 11.3.4. Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures -- 11.4. Modeling of the Phase Behaviour of Ionic Liquid Systems -- 11.4.1. Molecular Simulations -- 11.4.2. Excess Gibbs-energy Methods -- 11.4.3. Equation of State Modeling -- 11.4.4. Quantum Chemical Methods -- References -- ch. 12 Multi-parameter Equations of State for Pure Fluids and Mixtures / Roland Span.
12.1. Introduction -- 12.2. The Development of a Thermodynamic Property Formulation -- 12.3. Fitting an Equation of State to Experimental Data -- 12.3.1. Recent Nonlinear Fitting Methods -- 12.4. Pressure-Explicit Equations of State -- 12.4.1. Cubic Equations -- 12.4.2. The Benedict-Webb-Rubin Equation of State -- 12.4.3. The Bender Equation of State -- 12.4.4. The Jacobsen-Stewart Equation of State -- 12.4.5. Thermodynamic Properties from Pressure-Explicit Equations of State -- 12.5. Fundamental Equations -- 12.5.1. The Equation of Keenan, Keyes, Hill, and Moore -- 12.5.2. The Equations of Haar, Gallagher, and Kell -- 12.5.3. The Equation of Schmidt and Wagner -- 12.5.4. Reference Equations of Wagner -- 12.5.5. Technical Equations of Span and of Lemmon -- 12.5.6. Recent Equations of State.
Note continued--
13.6. Concluding Remarks -- References -- ch. 14 Applied Non-Equilibrium Thermodynamics / Dick Bedeaux -- 14.1. Introduction -- 14.1.1. A Systematic Thermodynamic Theory for Transport -- 14.1.2. On the Validity of the Assumption of Local Equilibrium -- 14.1.3. Concluding remarks -- 14.2. Fluxes and Forces from the Second Law of Thermodynamics -- 14.2.1. Continuous phases -- 14.2.2. Maxwell-Stefan Equations -- 14.2.3. Discontinuous Systems -- 14.2.4. Concluding Remarks -- 14.3. Chemical Reactions -- 14.3.1. Thermal Diffusion in a Reacting System -- 14.3.2. Mesoscopic Description Along the Reaction Coordinate -- 14.3.3. Heterogeneous Catalysis -- 14.3.4. Concluding Remarks -- 14.4. The Path of Energy-Efficient Operation -- 14.4.1. An Optimisation Procedure -- 14.4.2. Optimal Heat Exchange -- 14.4.3. The Highway Hypothesis for a Chemical Reactor -- 14.4.4. Energy-Efficient Production of Hydrogen Gas -- 14.4. Conclusions -- References.
Reproduction Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
Subject Fluids -- Thermal properties.
Genre/Form Electronic books.
Added Author Goodwin, A. R. H.
Sengers, J. V.
Peters, Cor J.
Royal Society of Chemistry (Great Britain)
International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division.
International Association of Chemical Thermodynamics.
ProQuest (Firm)
ISBN 9781847558060 (hbk.)
1847558062 (hbk.)
9781849730983 (electronic bk.)

 
    
Available items only