Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Books/E-Docs
Author Dunsmore, Joel P.

Title Handbook of microwave component measurements : with advanced VNA techniques / Joel P. Dunsmore.

Publication Info. Chichester, West Sussex, United Kingdom : John Wiley & Sons, 2012.

Copies

Location Call No. OPAC Message Status
 Axe Books 24x7 Engineering E-Book  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
data file rda
Summary "A practical guide to the most modern techniques for microwave measurements Handbook of Microwave Component Measurements is a complete reference to this topic, focusing on the modern measurement tools, such as a Vector Network Analyzer (VNA), gathering in one place all the concepts, formulas, and best practices of measurement science. It includes basic concepts in each chapter as well as appendices which provide all the detail needed to understand the science behind microwave measurements. The book offers an insight into the best practices for ascertaining the true nature of the device-under-test (DUT), optimizing the time to setup and measure, and to the greatest extent possible, remove the effects of the measuring equipment from that result. Furthermore, the author presents information in a way that is easily accessible to the student or new engineer, but complete enough to provide details of measurement science for even the most advanced applications and researchers. Explains the interactions between the device-under-test (DUT) and the measuring equipment by demonstrating the best practices for ascertaining the true nature of the DUT, and optimizing the time to set up and measure Offers a detailed explanation of algorithms and mathematics behind measurements and error correction Provides numerous illustrations (e.g. block-diagrams for circuit connections and measurement setups) and practical examples on real-world devices, which can provide immediate benefit to the reader Written by the principle developer and designer of many of the measurement methods described Includes an accompanying website containing example test scripts for setting up and processing device measurement and data "-- Provided by publisher.
Bibliography Includes bibliographical references and index.
Note Print version record and CIP data provided by publisher.
Contents Machine generated contents note: 1. Introduction to Microwave Measurements -- 1.1. Modern Measurement Process -- 1.2. Practical Measurement Focus -- 1.3. Definition of Microwave Parameters -- 1.3.1. S-Parameter Primer -- 1.3.2. Phase Response of Networks -- 1.4. Power Parameters -- 1.4.1. Incident and Reflected Power -- 1.4.2. Available Power -- 1.4.3. Delivered Power -- 1.4.4. Power Available from a Network -- 1.4.5. Available Gain -- 1.5. Noise Figure and Noise Parameters -- 1.5.1. Noise Temperature -- 1.5.2. Effective or Excess Input Noise Temperature -- 15.3. Excess Noise Power and Operating Temperature -- 1.5.4. Noise Power Density -- 1.5.5. Noise Parameters -- 1.6. Distortion Parameters -- 1.6.1. Harmonics -- 1.6.2. Second-Order Intercept -- 1.6.3. Two-Tone Intermodulation Distortion -- 1.7. Characteristics of Microwave Components -- 1.8. Passive Microwave Components -- 1.8.1. Cables, Connectors and Transmission Lines -- 1.8.2. Connectors -- 1.8.3. Non-Coaxial Transmission Lines -- 1.9. Filters -- 1.10. Directional Couplers -- 1.11. Circulators and Isolators -- 1.12. Antennas -- 1.13. PCB Components -- 1.13.1. SMT Resistors -- 1.13.2. SMT Capacitors -- 1.13.3. SMT Inductors -- 1.13.4. PCB Vias -- 1.14. Active Microwave Components -- 1.14.1. Linear and Non-Linear -- 1.14.2. Amplifiers: System, Low Noise, High Power -- 1.14.3. Mixers and Frequency Converters -- 1.14.4. Frequency Multipliers and Limiters and Dividers -- 1.14.5. Oscillators -- 1.15. Measurement Instrumentation -- 1.15.1. Power Meters -- 1.15.2. Signal Sources -- 1.15.3. Spectrum Analyzers -- 1.15.4. Vector Signal Analyzers -- 1.15.5. Noise Figure Analyzers -- 1.15.6. Network Analyzers -- References -- 2. VNA Measurement Systems -- 2.1. Introduction -- 2.2. VNA Block Diagrams -- 2.2.1. VNA Source -- 2.2.2. Understanding Source Match -- 2.2.3. VNA Test Set -- 2.2.4. Directional Devices -- 2.2.5. VNA Receivers -- 2.2.6. IF and Data Processing -- 2.2.7. Multiport Extensions -- 2.2.8. High Power Test Systems -- 2.3. VNA Measurement of Linear Microwave Parameters -- 2.3.1. Linear Measurements Methods for S-Parameters -- 2.3.2. Power Measurements with a VNA -- 2.3.3. Other Measurement Limitations of the VNA -- 2.5.4. Limitations Due to External Components -- 2.4. Measurements Derived from S-Parameters -- 2.4.1. Smith Chart -- 2.4.2. Transforming S-Parameters to Other Impedances -- 2.4.3. Concatenating Circuits and T-Parameters -- 2.5. Modeling Circuits Using Y and Z Conversion -- 2.5.1. Reflection Conversion -- 2.5.2. Transmission Conversion -- 2.6. Other Linear Parameters -- 2.6.1. Z-Parameters, or Open-Circuit Impedance Parameters -- 2.6.2. Y-Parameters, or Short-Circuit Admittance Parameters -- 2.6.3. ABCD Parameters -- 2.6.4. H-Parameters or Hybrid Parameters -- 2.6.5. Complex Conversions and Non-Equal Reference Impedances -- References -- 3. Calibration and Vector Error Correction -- 3.1. Introduction -- 3.2. Basic Error Correction for S-Parameters: Cal Application -- 3.2.1. Twelve-Term Error Model -- 3.2.2. One-Port Error Model -- 3.2.3. Eight-Term Error Model -- 3.3. Determining Error Terms: Cal Acquisition for 12-Term Models -- 3.3.1. One-Port Error Terms -- 3.3.2. One-Port Standards -- 3.3.3. Two-Port Error Terms -- 3.3.4. Twelve-Term to Eleven-Term Error Model -- 3.4. Determining Error Terms: Cal Acquisition for Eight-Term Models -- 3.4.1. TRL Standards and Raw Measurements -- 3.4.2. Special Cases for TRL Calibration -- 3.4.3. Unknown Thru or SOLR (Reciprocal Thru Calibration) -- 3.4.4. Applications of Unknown Thru Calibrations -- 3.4.5. QSOLT Calibration -- 3.4.6. Electronic Calibration or Automatic Calibration -- 3.5. Waveguide Calibrations -- 3.6. Calibration for Source Power -- 3.7. Calibration for Receiver Power -- 3.7.1. Some Historical Perspective -- 3.7.2. Modern Receiver Power Calibration -- 3.7.3. Response Correction for the Transmission Test Receiver -- 3.8. Devolved Calibrations -- 3.8.1. Response Calibrations -- 3.8.2. Enhanced Response Calibration -- 3.9. Determining Residual Errors -- 3.9.1. Reflection Errors -- 3.9.2. Using Airlines to Determine Residual Errors -- 3.10. Computing Measurement Uncertainties -- 3.10.1. Uncertainty in Reflection Measurements -- 3.10.2. Uncertainty in Source Power -- 3.10.3. Uncertainty in Measuring Power (Receiver Uncertainty) -- 3.11. S21 or Transmission Uncertainty -- 3.12. Errors in Phase -- 3.13. Practical Calibration Limitations -- 3.13.1. Cable Flexure -- 3.13.2. Changing Power after Calibration -- 3.13.3. Compensating for Step Attenuator Changes in Step Attenuators -- 3.13.4. Connector Repeatability -- 3.13.5. Noise Effects -- 3.13.6. Drift: Short-Term and Long-Term -- 3.13.7. Interpolation of Error Terms -- 3.13.8. Calibration Quality: Electronic vs Mechanical Kits -- References -- 4. Time Domain Transforms -- 4.1. Introduction -- 4.2. Fourier Transform -- 4.2.1. Continuous Fourier Transform -- 4.2.2. Even and Odd Functions and the Fourier Transform -- 4.2.3. Modulation (Shift) Theorem -- 4.3. Discrete Fourier Transform -- 4.3.1. FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform) -- 4.3.2. Discrete Fourier Transforms -- 4.4. Fourier Transform (Analytic) vs VNA Time Domain Transform -- 4.4.1. Defining the Fourier Transform -- 4.4.2. Effects of Discrete Sampling -- 4.4.3. Effects of Truncated Frequency -- 4.4.4. Windowing to Reduce Effects of Truncation -- 4.4.5. Scaling and Renormalization -- 4.5. Low-Pass and Band-Pass Transforms -- 4.5.1. Low-Pass Impulse Mode -- 4.5.2. DC Extrapolation -- 4.5.3. Low-Pass Step Mode -- 4.5.4. Band-Pass Mode -- 4.6. Time Domain Gating -- 4.6.1. Gating Loss and Renormalization -- 4.7. Examples of Time Domain Transforms of Various Networks -- 4.7.1. Time Domain Response of Changes in Line Impedance -- 4.7.2. Time Domain Response of Discrete Discontinuities -- 4.7.3. Time Domain Responses of Various Circuits -- 4.8. Effects of Masking and Gating on Measurement Accuracy -- 4.8.1. Compensation for Changes in Line Impedance -- 4.8.2. Compensation for Discrete Discontinuities -- 4.8.3. Time Domain Gating -- 4.8.4. Estimating an Uncertainty Due to Masking -- 4.9. Conclusions -- References -- 5. Measuring Linear Passive Devices -- 5.1. Transmission Lines, Cables and Connectors -- 5.1.1. Calibration for Low Loss Devices with Connectors -- 5.1.2. Measuring Electrically Long Devices -- 5.1.3. Attenuation Measurements -- 5.1.4. Return Loss Measurements -- 5.1.5. Cable Length and Delay -- 5.2. Filters and Filter Measurements -- 5.2.1. Filter Classes and Difficulties -- 5.2.2. Duplexer and Diplexers -- 5.2.3. Measuring Tunable High-Performance Filters -- 5.2.4. Measuring Transmission Response -- 5.2.5. High Speed vs Dynamic Range -- 5.2.6. Extremely High Dynamic Range Measurements -- 5.2.7. Calibration Considerations -- 5.3. Multiport Devices -- 5.3.1. Differential Cables and Lines -- 5.3.2. Couplers -- 5.3.3. Hybrids, Splitters and Dividers -- 5.3.4. Circulators and Isolators -- 5.4. Resonators -- 5.4.1. Resonator Responses on a Smith Chart -- 5.5. Antenna Measurements -- 5.6. Conclusions -- References -- 6. Measuring Amplifiers -- 6.1. Amplifiers as Linear Devices -- 6.1.1. Pretesting an Amplifier -- 6.1.2. Optimizing VNA Settings for Calibration -- 6.1.3. Calibration for Amplifier Measurements -- 6.1.4. Amplifier Measurements -- 6.1.5. Analysis of Amplifier Measurements -- 6.1.6. Saving Amplifier Measurement Results -- 6.2. Gain Compression Measurements -- 6.2.1. Compression Definitions -- 6.2.2. AM-to-PM or Phase Compression -- 6.2.3. Swept Frequency Gain and Phase Compression -- 6.2.4. Gain Compression Application, Smart Sweep and Safe-Sweep Mode -- 6.3. Measuring High-Gain Amplifiers -- 6.3.2. Calibration Considerations -- 6.4. Measuring High-Power Amplifiers -- 6.4.1. Configurations for Generating High Drive Power -- 6.4.2. Configurations for Receiving High Power -- 6.4.3. Power Calibration and Pre/Post Leveling -- 6.5. Making Pulsed-RF Measurements -- 6.5.2. Pulse Profile Measurements -- 6.5.3. Pulse-to-Pulse Measurements -- 6.5.4. DC Measurements for Pulsed RF Stimulus -- 6.6. Distortion Measurements -- 6.6.1. Harmonic Measurements on Amplifiers -- 6.6.2. Two-Tone Measurements, IMD and TOI Definition -- 6.6.3. Measurement Techniques for Two-Tone TOI -- 6.6.4. Swept IMD -- 6.6.5. Optimizing Results -- 6.6.6. Error Correction -- 6.7. Noise Figure Measurements -- 6.7.1. Definition of Noise Figure -- 6.7.2. Noise Power Measurements -- 6.7.3. Computing Noise Figure from Noise Powers -- 6.7.4. Computing DUT Noise Figure from Y-Factor Measurements -- 6.7.5. Cold-Source Methods -- 6.7.6. Noise Parameters -- 6.7.7. Error Correction in Noise Figure Measurements -- 6.7.8. Uncertainty of Noise Figure Measurements -- 6.7.9. Verifying Noise Figure Measurements -- 6.7.10. Techniques for Improving Noise Figure Measurements -- 6.8. X-Parameters, Load Pull Measurements and Active Loads -- 6.8.1. Non-Linear Responses and X-Parameters -- 6.8.2. Load Pull, Source-Pull and Load Contours -- 6.9. Conclusions on Amplifier Measurements -- References -- 7. Mixer and Frequency Converter Measurements -- 7.1. Mixer Characteristics -- 7.1.1. Small Signal Model of Mixers -- 7.1.2. Reciprocity in Mixers -- 7.1.3. Scalar and Vector Responses.
Note continued: 7.2. Mixers vs Frequency Converters -- 7.2.1. Frequency Converter Design -- 7.2.2. Multiple Conversions and Spur Avoidance -- 7.3. Mixers as a 12-Port Device -- 7.3.1. Mixer Conversion Terms -- 7.4. Mixer Measurements: Frequency Response -- 7.4.1. Introduction -- 7.4.2. Amplitude Response -- 7.4.3. Phase Response -- 7.4.4. Group Delay and Modulation Methods -- 7.4.5. Swept LO Measurements -- 7.5. Calibration for Mixer Measurements -- 7.5.1. Calibrating for Power -- 7.5.2. Calibrating for Phase -- 7.5.3. Determining the Phase and Delay of a Reciprocal Calibration -Mixer -- 7.6. Mixers Measurements vs Drive Power -- 7.6.1. Mixer Measurements vs LO Drive -- 7.6.2. Mixer Measurements vs RF Drive Level -- 7.7. TOI and Mixers -- 7.7.1. IMD vs LO Drive Power -- 7.7.2. IMD vs RF Power -- 7.7.3. IMD vs Frequency Response -- 7.8. Noise Figure in Mixers and Converters -- 7.8.1. Y-Factor Measurements on Mixers -- 7.8.2. Cold Source Measurements on Mixers -- 7.9. Special Cases -- 7.9.1. Mixers with RF or LO Multipliers -- 7.9.2. Segmented Sweeps -- 7.9.3. Measuring Higher-Order Products -- 7.9.4. Mixers with an Embedded LO -- 7.9.5. High-Gain and High-Power Converters -- 7.10. Conclusions on Mixer Measurements -- References -- 8. VNA Balanced Measurements -- 8.1. Four-Port Differential and Balanced S-Parameters -- 8.2. Three-Port Balanced Devices -- 8.3. Measurement Examples for Mixed Mode Devices -- 8.3.1. Passive Differential Devices: Balanced Transmission Lines -- 8.3.2. Differential Amplifier Measurements -- 8.3.3. Differential Amplifiers and Non-Linear Operation -- 8.4. True Mode VNA for Non-Linear Testing -- 8.4.1. True Mode Measurements -- 8.4.2. Determining the Phase-Skew of a Differential Device -- 8.5. Differential Testing Using Baluns, Hybrids and Transformers -- 8.5.1. Transformers vs Hybrids -- 8.5.2. Using Hybrids and Baluns with a Two-Port VNA -- 8.6. Distortion Measurements of Differential Devices -- 8.6.1. Comparing Single Ended IMD Measurement to True Mode Measurements -- 8.7. Noise Figure Measurements on Differential Devices -- 8.7.1. Mixed Mode Noise Figure -- 8.7.2. Measurement Setup -- 8.8. Conclusions on Differential Device Measurement -- References -- 9. Advanced Measurement Techniques -- 9.1. Creating Your Own Cal Kits -- 9.1.1. PCB Example -- 9.1.2. Evaluating PCB Fixtures -- 9.2. Fixturing and De-embedding -- 9.2.1. De-embedding Mathematics -- 9.3. Determining S-Parameters for Fixtures -- 9.3.1. Fixture Characterization Using One-Port Calibrations -- 9.4. Automatic Port Extensions -- 9.5. AFR: Fixture Removal Using Time Domain -- 9.6. Embedding Port-Matching Elements -- 9.7. Impedance Transformations -- 9.8. De-embedding High-Loss Devices -- 9.9. Understanding System Stability -- 9.9.1. Determining Cable Transmission Stability -- 9.9.2. Determining Cable Mismatch Stability -- 9.9.3. Reflection Tracking Stability -- 9.10. Some Final Comments on Advanced Techniques and Measurements -- References.
Subject Microwave devices -- Testing.
TECHNOLOGY & ENGINEERING -- Microwaves.
Microwave devices -- Testing. (OCoLC)fst01020204
Genre/Form Electronic books.
Other Form: Print version: Dunsmore, Joel P. Handbook of microwave component measurements. Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2012 9780470664766 (DLC) 2012011804
ISBN 9781118391259 (ePub)
111839125X (ePub)
9781118391310 (MobiPocket)
1118391314 (MobiPocket)
9781118391327 (Adobe PDF)
1118391322 (Adobe PDF)
9781118391242 (electronic bk.)
1118391241 (electronic bk.)
9781283549769 (MyiLibrary)
128354976X (MyiLibrary)
9780470664766 (cloth)
9781119979555
1119979552
Standard No. AU@ 000049092528
AU@ 000052006520
CHNEW 000939760
CHVBK 480200521
DEBBG BV041430793
DEBSZ 398266026
DEBSZ 485019353
NZ1 14792447
NZ1 15340945

 
    
Available items only