Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Books/E-Docs
Author White, Ralph E.

Title Computational methods in chemical engineering with Maple / Ralph E. White and Venkat R. Subramanian.

Imprint Berlin ; Heidelberg : Springer-Verlag, ©2010.

Copies

Location Call No. OPAC Message Status
 Axe Books 24x7 Engineering E-Book  Electronic Book    ---  Available
Description 1 online resource (xv, 860 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file PDF rda
Bibliography Includes bibliographical references and index.
Contents Note continued: Example 4.8 Heat Conduction in a Rectangular Slab -- Example 4.9 Laminar Flow in a CVD Reactor -- 4.5. Similarity Solution Technique for Elliptic Partial Differential Equations -- Example 4.10 Steady State Heat Conduction in a Plate -- Example 4.11 Current Distribution in an Electrochemical Cell -- 4.6. Similarity Solution Technique for Nonlinear Partial Differential Equations -- Example 4.12 Variable Diffusivity -- Example 4.13 Plane Flow Past a Flat Plate -- Blassius Equation -- 4.7. Summary -- 4.8. Exercise Problems -- References -- 5. Method of Lines for Parabolic Partial Differential Equations -- 5.1. Semianalytical Method for Parabolic Partial Differential Equations (PDEs) -- 5.1.1. Introduction -- 5.1.2. Semianalytical Method for Homogeneous PDEs -- Example 5.1 Heat Conduction in a Rectangular Slab -- 5.1.3. Semianalytical Method for Nonhomogeneous PDEs -- Example 5.2 -- Example 5.3 -- Example 5.4 -- Example 5.5 -- Example 5.6 Semianalytical Method for the Graetz Problem -- Example 5.7 Semianalytical Method for PDEs with Known Initial Profiles -- 5.1.4. Semianalytical Method for PDEs in Composite Domains -- Example 5.8 -- 5.1.5. Expediting the Calculation of Exponential Matrix -- Example 5.9 -- Example 5.10 -- Example 5.11 -- 5.1.6. Summary -- 5.1.7. Exercise Problems -- 5.2. Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) -- 5.2.1. Introduction -- 5.2.2. Numerical Method of Lines for Parabolic PDEs with Linear -- Example 5.2.1 Diffusion with Second Order Reaction -- Example 5.2.2 Variable Diffusivity -- 5.2.3. Numerical Method of Lines for Parabolic PDEs with Nonlinear Boundary -- Example 5.2.3 Nonlinear Radiation at the Surface -- 5.2.4. Numerical Method of Lines for Stiff Nonlinear PDEs -- Example 5.2.4 Exothermal Reaction in a Sphere.
Note continued: 5.2.5. Numerical Method of Lines for Nonlinear Coupled PDEs -- Example 5.2.5 Two Coupled PDEs -- 5.2.6. Numerical Method of Lines for Moving Boundary Problems -- Example 5.2.6 Shrinking Core Model for Catalyst Regeneration -- 5.2.7. Summary -- 5.2.8. Exercise Problems -- References -- 6. Method of Lines for Elliptic Partial Differential Equations -- 6.1. Semianalytical and Numerical Method of Lines for Elliptic PDEs -- 6.1.1. Introduction -- 6.1.2. Semianalytical Method for Elliptic PDEs in Rectangular Coordinates -- Example 6.1 Heat Transfer in a Rectangle -- Example 6.2 -- 6.1.3. Semianalytical Method for Elliptic PDEs in Cylindrical Coordinates -- Graetz Problem -- Example 6.3 Graetz Problem with a Fixed Wall Temperature -- 6.1.4. Semianalytical Method for Elliptic PDEs with Nonlinear Boundary Conditions -- Example 6.4 Nonlinear Radiation Boundary Condition -- 6.1.5. Semianalytical Method for Elliptic PDEs with Irregular Shapes -- Example 6.5 Potential Distribution in a Hull Cell -- 6.1.6. Numerical Method of Lines for Elliptic PDEs in Rectangular Coordinates -- Example 6.6 Numerical Solution for Heat Transfer in a Rectangle -- Example 6.7 Numerical Solution for Heat Transfer for Nonlinear Elliptic PDEs -- 6.1.7. Summary -- References -- 7. Partial Differential Equations in Finite Domains -- 7.1. Separation of Variables Method for Partial Differential Equations (PDEs) in Finite Domains -- 7.1.1. Introduction -- 7.1.2. Separation of Variables for Parabolic PDEs with Homogeneous Boundary Conditions -- Example 7.1 Heat Conduction in a Rectangle -- Example 7.2 Heat Conduction with an Insulator Boundary Condition -- Example 7.3 Mass Transfer in a Spherical Pellet -- 7.1.3. Separation of Variables for Parabolic PDEs with an Initial Profile -- Example 7.4 Heat Conduction in a rectangle with an Initial Profile.
Note continued: Example 7.5 Heat Conduction in a Slab with a Linear Initial Profile -- 7.1.4. Separation of Variables for Parabolic PDEs with Eigenvalues Governed by Transcendental Equations -- Example 7.6 Heat Conduction in a Slab with Radiation Boundary Conditions -- 7.1.5. Separation of Variables for Parabolic PDEs with Nonhomogeneous Boundary Conditions -- Example 7.7 Heat Conduction in a slab with Nonhomogeneous Boundary Conditions -- Example 7.8 Diffusion with Reaction -- 7.1.6. Separation of Variables for Parabolic PDEs with Two Flux Boundary Conditions -- Example 7.9 Diffusion in a Slab with Nonhomogeneous Flux Boundary Conditions -- 7.1.7. Numerical Separation of Variables for Parabolic PDEs -- Example 7.10 Heat Transfer in a Rectangle -- 7.1.8. Separation of Variables for Elliptic PDEs -- Example 7.11 Heat Transfer in a Rectangle -- Example 7.12 Diffusion in a Cylinder -- Example 7.13 Heat Transfer with Nonhomogeneous Boundary Conditions -- Example 7.14 Heat Transfer with a Nonhomogeneous Governing Equation -- 7.1.9. Summary -- 7.1.10. Exercise Problems -- References -- 8. Laplace Transform Technique for Partial Differential Equations -- 8.1. Laplace Transform Technique for Partial Differential Equations (PDEs) in Finite Domains -- 8.1.1. Introduction -- 8.1.2. Laplace Transform Technique for Hyperbolic PDEs -- Example 8.1 Wave Propagation in a Rectangle -- Example 8.2 Wave Propagation in a Rectangle -- 8.1.3. Laplace Transform Technique for Parabolic Partial Differential Equations -- Simple Solutions -- Example 8.3 Heat Transfer in a Rectangle -- Example 8.4 Transient Heat Transfer in a Rectangle -- 8.1.4. Laplace Transform Technique for Parabolic Partial Differential Equations -- Short Time Solution -- Example 8.5 Heat Transfer in a Rectangle -- Example 8.6 Mass Transfer in a Spherical Pellet.
Note continued: 8.1.5. Laplace Transform Technique for Parabolic Partial Differential Equations -- Long Time Solution -- Example 8.7 Heat Conduction with an Insulator Boundary Condition -- Example 8.8 Diffusion with Reaction -- Example 8.9 Heat Conduction with Time Dependent Boundary Conditions -- 8.1.6. Laplace Transform Technique for Parabolic Partial Differential Equations -- Heaviside Expansion Theorem for Multiple Roots -- Example 8.10 Heat Transfer in a Rectangle -- Example 8.11 Diffusion in a Slab with Nonhomogeneous Flux Boundary Conditions during Charging of a Battery -- Example 8.12 Distribution of Overpotential in a Porous Electrode -- Example 8.13 Heat Conduction in a Slab with Radiation Boundary Conditions -- 8.1.7. Laplace Transform Technique for Parabolic Partial Differential Equations in Cylindrical Coordinates -- Example 8.14 Heat Conduction in a Cylinder -- 8.1.8. Laplace Transform Technique for Parabolic Partial Differential Equations for Time Dependent Boundary Conditions -- Use of Convolution Theorem -- Example 8.15 Heat Conduction in a Rectangle with a Time Dependent Boundary Condition -- 8.1.9. Summary -- 8.1.10. Exercise Problems -- References -- 9. Parameter Estimation -- 9.1. Introduction -- 9.2. Least Squares Method -- 9.2.1. Summation Form or Classical Form -- 9.2.2. Confidence Intervals: Classical Approach -- 9.2.3. Prediction of New Observations -- 9.2.4. One Parameter through the Origin Model -- 9.3. Nonlinear Least Squares -- Example 9.1 Parameter Estimation -- 9.4. Hessian Matrix Approach -- 9.5. Confidence Intervals -- 9.6. Sensitivity Coefficient Equations -- 9.7. One Parameter Model -- 9.8. Two Parameter Model -- 9.9. Exercise Problems -- References -- 10. Miscellaneous Topics -- 10.1. Miscellaneous Topics on Numerical Methods -- 10.1.1. Introduction.
Note continued: 10.1.2. Iterative Finite Difference Solution for Boundary Value Problems -- Example 10.1 Diffusion with a Second Order Reaction -- Example 10.2 Nonisothermal Reaction in a Catalyst Pellet -- Multiple Steady States -- 10.1.3. Finite Difference Solution for Elliptic PDEs -- Example 10.3 Heat Transfer in a Rectangle -- Example 10.4 Heat Transfer in a Cylinder -- 10.1.4. Iterative Finite Difference Solution for Elliptic PDEs -- Example 10.5 Heat Transfer in a Rectangle -- Nonlinear Elliptic PDE -- 10.1.5. Numerical Method of Lines for First Order Hyperbolic PDEs -- Example 10.6 Wave Propagation in a Rectangle with Consistent Initial/Boundary Conditions -- Example 10.7 Wave Propagation in a Rectangle with inconsistent Initial/Boundary Conditions -- 10.1.6. Numerical Method of Lines for Second Order Hyperbolic PDEs -- Example 10.8 Wave Equation with Consistent Initial/Boundary Conditions -- Example 10.9 Wave Equation with Inconsistent Initial/Boundary Conditions -- 10.1.7. Summary -- 10.1.8. Exercise Problems -- References.
Note Print version record.
Summary This book helps chemical and other engineers to develop their skills for solving mathematical models using Maple. These mathematical models can consist of systems of algebraic, ordinary, and partial differential equations. Maple's `dsolve' is used to obtain solutions for many of these models. Maple worksheets are provided on the Springer website for use by readers to solve the example problems in this book. --Book Jacket.
Subject Maple (Computer file)
MAPLE (Logiciel)
Maple (Computer file) (OCoLC)fst01374613
Chemical engineering -- Data processing.
Génie chimique -- Informatique.
Chimie.
Science des matériaux.
Chemical engineering -- Data processing. (OCoLC)fst00852900
Genre/Form Electronic books.
Added Author Subramanian, Venkat R.
Other Form: Print version: Computational Methods in Chemical Engineering With Maple Applications. Springer Verlag 2009 9783642043109 (DLC) 2009940124 (OCoLC)436030878
ISBN 9783642043116
3642043119
9783642043109
3642043100
Standard No. 10.1007/978-3-642-04311-6 doi
AU@ 000048697865
NLGGC 332846806
NZ1 13432506
NZ1 13447640
NZ1 16059519
NZ1 16059917

 
    
Available items only