Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Books/E-Docs
Author Ioinovici, Adrian, 1950-

Title Power electronics and energy conversion systems. Volume 1, Fundamentals and hard-switching converters / Adrian Ioinovici.

Imprint Chichester, West Sussex ; Hoboken : John Wiley & Sons, 2013.

Copies

Location Call No. OPAC Message Status
 Axe Books 24x7 Engineering E-Book  Electronic Book    ---  Available
Description 1 online resource (1 volume) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references and index.
Note Print version record.
Contents Machine generated contents note: 1. Introduction -- 1.1. Why Energy Conversion Electronics Circuits? -- 1.1.1. Applications in the Information and Telecommunication Industry -- 1.1.2. Applications in Renewable Energy Conversion -- 1.1.3. Future Energy Conversion -- Fuel Cells -- 1.1.4. Electric Vehicles -- 1.1.5. Applications in Electronic Display Devices -- 1.1.6. Audio Amplifiers -- 1.1.7. Applications in Portable Electronic Devices -- 1.1.8. Applications in High Voltage Physics Experiments and Atomic Accelerators -- 1.1.9. Lighting Technology -- 1.1.10. Aerospace Applications -- 1.1.11. Power System Conditioning -- 1.1.12. Energy Recycling in Manufacturing Industry -- 1.1.13. Applications in Space Exploration -- 1.1.14. Defense Applications -- 1.1.15. Drives and High-Power Industrial Applications -- 1.1.16. Classification of Power Electronic Circuits -- 1.2. Basic Principles of Operation of a Power Electronics Circuit -- 1.3. Basic Components of the Power Circuit: Power Semiconductor Switches and Passive Reactive Elements -- 1.3.1. Uncontrollable Switches -- Power Diodes -- 1.3.2. Semicontrollable Switches (Thyristors) -- 1.3.3. Controllable Switches -- 1.3.3.1. Bipolar Junction Transistor (BJT) -- 1.3.3.2. Power Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) -- 1.3.3.3. Insulated Gate Bipolar Transistor (IGBT) -- 1.3.4. Gallium Nitride (GaN) Switch Technology -- 1.3.5. Energy Losses Associated with Power Switches -- 1.3.5.1. Switching Losses -- 1.3.5.2. Off-State Leakage Power Loss -- 1.3.5.3. Conduction Power Loss -- 1.3.5.4. Gate Drive Power Loss -- 1.3.5.5. Heat Sinks -- 1.3.5.6. Outline for Choosing a Transistor -- 1.3.6. Passive Reactive Elements -- 1.3.6.1. Capacitors -- 1.3.6.2. Inductors, Transformers, Coupled Inductors -- 1.3.7. Ultracapacitors -- 1.4. Basic Steady-State Analysis of Duty Cycle Controlled Converters with Constant Switching Frequency -- 1.4.1. Input-to-Output Voltage Ratio for Basic DC-DC Converters -- 1.4.2. Continuous and Discontinuous Conduction Operation Modes -- 1.4.3. Design of the Elements of the Basic Converters -- 1.4.4. Controller for Duty Cycle Control (PWM) -- 1.4.5. Conversion Efficiency, Hard-switching and Soft-switching -- 1.5. Introduction to Switched-Capacitor (SC) Converters -- 1.6. Frequency-Controlled Converters -- 1.6.1. Resonant Converters -- 1.6.2. Quasi-Resonant Converters (QRC) -- 1.7. Overview on AC-DC Rectifiers and DC-AC Inverters -- 1.7.1. Rectifiers -- 1.7.2. Inverters -- 1.8. Case Studies -- 1.8.1. Case Study 1 -- 1.8.2. Case Study 2 -- 1.8.3. Case Study 3 -- 1.9. Highlights of the Chapter -- Problems -- Bibliography -- 2. Modeling DC-DC Converters -- 2.1. What is the Purpose of Modeling the Power Stage? -- 2.2. Average State-Space Equations, Small-Ripple Approximation (Time-Linearization) -- 2.3. DC Voltage Gain and AC Small-Signal Open-Loop Transfer Functions Based on Average State-Space Equations for Converters Operating in Continuous Conduction Mode -- 2.3.1. DC Voltage Gain and AC Open-Loop Line-to-Load Voltage Transfer Function -- 2.3.2. Duty Cycle-to-Output Voltage AC Transfer Function. Small-Signal Approximation -- 2.3.3. DC Gain and AC Small-Signal Open-Loop Transfer Functions of the Boost, Buck and Buck-Boost Converters Operating in CCM -- 2.3.3.1. Boost Converter -- 2.3.3.2. Buck Converter -- 2.3.3.3. Buck-Boost Converter -- 2.3.4*. Graphical Averaged Models of the Boost, Buck and Buck-Boost Converters Operating in CCM -- 2.3.4.1. Boost Converter -- 2.3.4.2. Buck Converter -- 2.3.4.3. Buck-Boost Converter -- 2.3.5. Canonical Graphical Averaged Models of DC-DC Converters Operating in CCM -- 2.4. DC Voltage Gain and AC Small-Signal Open-Loop Transfer Functions Based on Average State-Space Equations for Converters Operating in Discontinuous Conduction Mode -- 2.4.1. Reduced-Order Averaged Models -- 2.4.1.1. Boost Converter -- 2.4.1.2. Buck-boost converter -- 2.4.1.3. Buck Converter -- 2.4.1.4*. Alternative Way for Obtaining First-Order Average State-Space Equations for Converters Operating in DCM by Neglecting the Dynamics of the Inductor Current -- 2.4.2*. Full-Order Averaged Models -- 2.4.2.1. Average State-Space Equations Without Neglecting the Inductor Current Dynamics -- 2.4.2.2. Average State-Space Equations Without Neglecting the Inductor Current Dynamics and Without Neglecting the Parasitic Resistances in the Inductor Charging Process -- 2.4.2.3. Full-Order Small-Signal Transfer Functions for Converters Operating in DCM -- 2.5*. Average PWM Switch Model -- 2.5.1. Average PWM Switch Model for Converters Operating in Continuous Conduction Mode -- 2.5.2. Average PWM Switch Model for Converters Operating in Discontinuous Conduction Mode -- 2.5.2.1. DC Analysis of the Boost Converter in DCM -- 2.5.2.2. Small-Signal Analysis of the Boost Converter in DCM -- 2.5.2.3. DC Analysis of the Buck Converter in DCM -- 2.5.2.4. Small-Signal Analysis of the Buck Converter in DCM -- 2.5.2.5. DC Analysis of the Buck-Boost Converter in DCM -- 2.5.2.6. Small-Signal Analysis of the Buck-Boost Converter in DCM -- 2.6. Average Model of the Switches Resistances and Diode Forward Voltage. Average Model of the PWM -- 2.6.1. Average Model of the Switches DC Resistances and Diode Forward Voltage -- 2.6.2. Average Model of the PWM -- 2.7*. Average Resonant Switch Model for the DC and Small-Signal Analysis of QRC Converters -- 2.7.1. Average Model of the Zero-Current (ZC) Resonant Switch -- 2.7.2. Average Model of the Zero-Voltage (ZV) Resonant Switch -- 2.7.3. DC Analysis and Open-Loop Small-Signal Transfer Functions of ZCS Quasi-Resonant Converters -- 2.7.3.1. ZCS QR Buck Converter -- 2.13.2. ZCS QR Boost Converter -- 2.7.3.3. ZCS QR Buck-Boost Converter -- 2.1. DC Analysis and Open-Loop Small-Signal Transfer Functions of ZVS Quasi-Resonant Converters -- 2.7.4.1. ZVS QR Buck Converter -- 2.7.4.2. ZVS QR Boost Converter -- 2.7.4.3. ZVS QR Buck-Boost Converter -- 2.8. Simulation and Computer-Aided Design of Power Electronics Circuits -- 2.9. Case Study -- 2.10. Highlights of the Chapter -- Problems -- Bibliography -- 3. Classical DC-DC PWM Hard-switching Converters -- 3.1. Buck DC-DC PWM Hard-switching Converter -- 3.1.1. Influence of the DC Resistance of the Inductor -- 3.1.2. Boundary Control -- 3.1.3. Calculation of Losses in a Buck Converter Operating in CCM by Considering the Inductor Current Ripple and the ESR of the Capacitor -- 3.1.4. Design of a Buck Converter in CCM Operation -- 3.1.4.1. Design Example -- 3.1.5. Buck Converter with Input Filter -- 3.1.6. Review of the Steady-State Analysis of the Buck Converter in DCM Operation -- 3.1.7. Design of a Buck Converter in DCM Operation -- 3.1.7.1. Design Example -- 3.1.8*. Aspects of Dynamic Response of Buck Converter -- 3.2. Boost DC-DC PWM Hard-switching Converter -- 3.2.1. Boost Converter in Steady-State CCM Operation -- 3.2.1.1. Design Example -- 3.2.2. Boost Converter in Steady-State DCM Operation -- 3.2.2.1. Design Example -- 3.2.3*. Aspects of Dynamic Response of Boost Converter -- 3.3. Buck-Boost DC-DC PWM Hard-switching Converter -- 3.3.1. Buck-Boost Converter in Steady-State CCM Operation -- 3.3.1.1. Design Example Case Study -- 3.3.1.2. Four-Switch Noninverting Buck-Boost Converter -- 3.3.2. Buck-Boost Converter in Steady-State DCM Operation -- 3.3.3*. Aspects of Dynamic Response of Buck-Boost Converter -- 3.4. Cuk (Boost-Buck) PWM Hard-switching Converter -- 3.4.1. Derivation and Switching Operation of the Cuk Converter -- 3.4.2. Steady-State Analysis of Cuk Converter in CCM Operation and its Design -- 3.4.3*. DC Voltage Gain and AC Small-Signal Characteristics of the Cuk Converter in the Presence of Parasitic Resistances -- 3.4.4. Design Example and Commercially Available Cuk Converters -- 3.4.4.1. Design of a Cuk Converter Based on National Semiconductor LM2611 Current-Mode Controller -- 3.4.5*. Discontinuous Conduction Mode for the Cuk Converter -- 3.4.6*. Cuk Converter with Coupled Inductor -- 3.5. SEPIC PWM Hard-switching Converter -- 3.5.1. SEPIC Converter in CCM Operation -- 3.5.2. Steady-State Analysis of SEPIC Converter in CCM Operation -- 3.5.3*. Small-Signal Analysis of the SEPIC Converter in CCM Operation -- 3.5.4. Commercially Available SEPIC Converters: Case Studies -- 3.5.4.1. SEPIC Converter Based on National Semiconductor LM3478 Controller -- 3.5.4.2. SEPIC Converter Based on Unitrode (Texas Instruments) UCC3803 Controller -- 3.5.4.3. SEPIC Converter Based on Unitrode (Texas Instruments) UC2577 Controller for Automotive Applications -- 3.5.4.4. SEPIC Converter Based on Texas Instruments TPS61175 IC Controller -- 3.5.5*. SEPIC Converter in DCM Operation -- 3.5.5.1. Numerical Example -- 3.5.6*. AC Analysis of SEPIC Converter in DICM -- 3.5.7*. Isolated SEPIC Converter -- 3.6. Zeta (Inverse SEPIC) PWM Hard-switching Converter -- 3.6.1. Zeta Converter in CCM Operation -- 3.6.2. Steady-State Analysis of a Zeta Converter in CCM Operation -- 3.6.3*. Small-Signal Analysis of the Zeta Converter in CCM Operation -- 3.6.4. Design Example and Case Study -- 3.6.4.1. Zeta Converter Based on the Sipex SP6126 Controller -- 3.6.4.2. Zeta Converter Based on the Dual-Channel Synchronous -- Current-Mode Switching Controller ADP1877 from Analog Devices -- 3.6.4.3. Zeta Converter Based on the Texas Instruments TPS -- Non-Synchronous Voltage-Mode Controller -- 3.6.5*. Zeta Converter in DCM Operation -- 3.6.5.1. Numerical Example -- 3.6.6*. Isolated Zeta Converter -- 3.7. Forward Converter.
Note continued: 3.7.1. Role of a High-Frequency Transformer in the Structure of DC-DC Converters -- 3.7.2. Derivation of Forward Converter -- 3.7.3. Operation of Forward Converter in CCM -- 3.7.3.1. First Switching Stage -- 3.7.3.2. Second Switching Stage -- 3.7.3.3. Third Switching Stage -- 3.7.3.4. Derivation of the Input-to-Output DC Voltage Conversion Ratio -- 3.7.3.5. Limit on the Maximum Duty Ratio -- 3.7.4. Operation of a Forward Converter in DCM and Design Considerations for CCM and DCM -- 3.7.5*. Multiple-Output Forward Converter -- 3.7.6*. Other Core Reset Strategies -- 3.7.6.1. Clamping Circuits for Core Reset -- 3.1.6.2. Operation of an Active Clamping Circuit Formed by a Switch and a Reset Capacitor -- 3.7.6.3. Resonant Passive Clamping Circuit -- 3.7.6.4. Two-Transistor Forward Converter -- 3.7.7. Examples of Practical Designs: Case Studies -- 3.7.7.1. Forward Converter with RCD Clamping Circuit -- 3.7.7.2. Forward Converter with a Reset Transformer Winding and Synchronous Rectification used in a Consumer Application for a USA Typical Input Voltage Range -- 3.7.7.3. Design of a Forward Converter using the MAX8541 Voltage-Mode Controller with Synchronous Rectifier -- 3.8*. Isolated Cuk Converter -- 3.9. Flyback Converter -- 3.9.1. Derivation of the Flyback Converter -- 3.9.2. Operation of Flyback Converter in CCM and DCM -- 3.9.2.1. Analysis for CCM Operation -- 3.9.2.2. Particularities of Operation in DCM -- 3.9.3. Effects of the Coupled Inductor Leakage Inductance -- 3.9.3.1. Dissipative RCD Snubber Solution -- 3.9.3.2. Transformer Tertiary Winding Solution -- 3.9.3.3*. Two-Transistor Flyback Converter -- 3.9.3.4*. Flyback Converter with Active Clamping -- 3.9.4*. Small-Signal Model of the Flyback Converter -- 3.9.5. Designs of the Flyback Converter: Case Studies -- Practical Considerations -- 3.9.5.1. Design of a Flyback Converter with Integrated Regulator Si9108, Vishai Siliconix -- 3.9.5.2. Flyback Converter for Battery-Powered CCDs (Charge Coupled Devices) -- 3.9.5.3. Flyback Converter Designed for Telecommunication Industry (Unitrode/Texas Instruments Application Note) -- 3.10. Push-Pull Converter -- 3.10.1. Push-Pull Converter of Buck Type (Voltage Driven) -- 3.10.2. CCM Operation of the Push-Pull Converter -- 3.10.3. Non-Idealities in the Push-Pull Converter -- 3.10.4. DCM Operation -- 3.10.5*. Push-Pull Converter of the Boost Type (Current Driven) -- 3.10.6. Design Example -- 3.11. Half-Bridge Converter -- 3.11.1. Buck-Type Half-Bridge Topology -- 3.11.2. CCM Operation -- 3.11.3. Input-to-Output Voltage Conversion Ratio and Design of a Half-Bridge Converter in CCM Operation -- 3.11.4. Practical Aspects -- 3.11.5. DCM Operation -- 3.11.6*. Current-Driven Half-Bridge Converter -- 3.12. Full-Bridge Converter -- 3.12.1. Full-Bridge Topology -- 3.12.2. CCM Operation of the Buck-Type Full-Bridge Converter -- 3.12.3. Input-to-Output Voltage Conversion Ratio and Design of a Buck-Type Full-Bridge Converter in CCM Operation -- 3.12.4. Practical Aspects -- 3.12.5*. Other Transistor Control Schemes: Phase-Shift Control -- 3.12.6*. Current-Driven Full-Bridge Converter -- 3.13. Highlights of the Chapter -- Problems -- Bibliography -- 4. Derived Structures of DC-DC Converters -- 4.1. Current Doubler Rectifier (CDR) for Push-Pull, Half-Bridge and Full-Bridge Converters -- 4.1.1. Cyclical Operation of Current Doubler Rectifier -- 4.1.2. Voltage Conversion Ratio of Converters with CDR -- 4.1.3. Ripple Cancellation in the Output Current -- 4.1.4*. Other Structures of CDR -- 4.1.5. Penalties of CDR -- 4.1.6*. Current Tripler and Current Multiplier -- 4.2. Voltage Doubler and Voltage Multiplier Rectifier -- 4.2.1. Full-Wave Bridge Voltage Doubler -- 4.2.2. Greinacher Multiplier -- 4.2.3. Voltage Tripler and General Cockcroft-Walton Multiplier -- 4.2.4*. Voltage Doubler with One Capacitor -- 4.2.5. Fibonacci Voltage Multiplier -- 4.2.6. Voltage Dividers -- 4.2.7*. "Economy" Power Supply and the 4x8 Power Supply -- 4.3. Quadratic Converters -- 4.3.1. Quadratic Buck Converters -- 4.3.2*. Buck-Boost Quadratic Converters (D <0.5) -- 4.4*. Two-Switch Buck-Boost Converter -- 4.4.1. Buck-Boost Converters Obtained by Interleaving a Boost and a Buck Switching Cell -- 4.4.2. Z-Source Buck-Boost Converter with Positive Output Voltage -- 4.5*. Switched-Capacitor/Switched-Inductor Integrated Basic Converters -- 4.5.1. Family of Converters Based on Switched-Capacitor/Switched-Inductor Structures -- 4.5.1.1. Switched-Capacitor/Switched-Inductor Building Blocks -- 4.5.1.2. Switched-Capacitor/Switched-Inductor Integrated Buck Converters -- 4.5.1.3. Switched-Capacitor/Switched-Inductor Integrated Boost Converters -- 4.5.1.4. Switched-Capacitor/Switched-Inductor Integrated Buck-Boost -- Cuk, SEPIC and Zeta Converters -- 4.5.2. KY Converter -- 4.5.2.1. First-Order KY Converter -- 4.5.2.2. Second-Order KY Converter -- 4.5.3. Watkins-Johnson Converter -- 4.6*. Sheppard-Taylor Converter -- 4.6.1. CCM Operation -- 4.6.2. Discontinuous Conduction Mode Operation -- 4.6.3. Isolated Sheppard-Taylor Converter -- 4.7*. Converters with Low Voltage Stress on the Active Switches -- 4.7.1. Four-Switch Full-Bridge-Type Converter with Vin/2 Primary-Side Switches Voltage Stress -- 4.7.2. Converter with Vin/3 Voltage Stress on the Primary-Side Switches -- 4.7.3. Three-Level Boost Converter -- 4.8*. Tapped Inductor-Based Converters -- 4.8.1. Tapped Inductor Buck Converter and VRMs (Voltage Regulator Module) -- 4.8.1.1. Diode-To-Tap and Switch-To-Tap Buck Converters -- 4.8.1.2. Rail-To-Tap (Watkins-Johnson Type) Tapped Inductor Buck Converter For Automotive Applications -- 4.8.1.3. Voltage Regulator Module (VRM) -- 4.8.2. Tapped Inductor Boost Converter -- 4.9*. Current-Driven Dual-Bridge Converter with Center-Tapped Inductor -- 4.10. Highlights of the Chapter -- Problems -- Bibliography.
Subject Power electronics.
Electric current converters.
Electric circuits.
Switching circuits.
TECHNOLOGY & ENGINEERING -- Telecommunications.
Electric circuits. (OCoLC)fst00904545
Electric current converters. (OCoLC)fst00904633
Power electronics. (OCoLC)fst01074238
Switching circuits. (OCoLC)fst01140635
Genre/Form Electronic books.
Other Form: Print version: Ioinovici, Adrian, 1950- Power electronics and energy conversion systems. Volume 1, Fundamentals and hard-switching converters. Chichester, West Sussex ; Hoboken : John Wiley & Sons, 2013 (DLC) 2012014532
ISBN 9781118443361 (electronic bk.)
1118443365 (electronic bk.)
9781118443040 (electronic bk.)
1118443047 (electronic bk.)
9781299449442 (electronic bk.)
1299449441 (electronic bk.)
9780470710999 (cloth)
0470710993 (cloth)
Standard No. 10.1002/9781118443040 doi
AU@ 000051629254
CHBIS 010026895
CHNEW 000941648
CHVBK 306229617
CHVBK 480219249
DEBBG BV041908920
DEBSZ 392090171
GBVCP 790207141
NZ1 15142884
NZ1 15341562

 
    
Available items only