Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Books/E-Docs

Title Testing adhesive joints : best practices / edited by Lucas F.M. da Silva [and others].

Imprint Weinheim : Wiley-VCH, ©2012.

Copies

Location Call No. OPAC Message Status
 Axe Books 24x7 Engineering E-Book  Electronic Book    ---  Available
Description 1 online resource (xxviii, 440 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references and index.
Note Print version record.
Summary Joining techniques such as welding, brazing, riveting and screwing are used by industry all over the world on a daily basis. A further method of joining has also proven to be highly successful: adhesive bonding. Adhesive bonding technology has an extremely broad range of applications. And it is difficult to imagine a product - in the home, in industry, in transportation, or anywhere else for that matter - that does not use adhesives or sealants in some manner. The book focuses on the methodology used for fabricating and testing adhesive and bonded joint specimens. The text covers a wide range of test methods that are used in the field of adhesives, providing vital information for dealing with the range of adhesive properties that are of interest to the adhesive community. With contributions from many experts in the field, the entire breadth of industrial laboratory examples, utilizing different best practice techniques are discussed. The core concept of the book is to provide essential information vital for producing and characterizing adhesives and adhesively bonded joints.
Contents Machine generated contents note: 1. Manufacture of Quality Specimens -- 1.1. Preparing Bulk Specimens by Hydrostatic Pressure / Lucas F.M. da Silva -- 1.1.1. Introduction -- 1.1.2. Principle -- 1.1.3. Metallic Mold -- 1.1.4. Silicone Frame -- 1.1.5. Adhesive Application -- 1.1.6. Cure -- 1.1.7. Specimen Machining -- 1.1.8. Results -- 1.2. Preparing Bulk Specimens by Injection / Stefanos Giannis -- 1.2.1. Introduction -- 1.2.2. Mold -- 1.2.3. Centrifuge -- 1.2.4. Cure -- 1.2.5. Final Specimen Preparation and Testing -- 1.3. Preparing Bulk Specimens by Pouring / Robert D. Adams -- 1.3.1. Introduction -- 1.3.2. Nature of Adhesives Supplied -- 1.3.3. Mixing -- 1.3.4. Pouring -- 1.3.5. Effect of Size -- 1.3.6. Specimen Production -- 1.4. Preparing Lap Joints with Flat Adherends / Lucas F.M. da Silva -- 1.4.1. Introduction -- 1.4.2. Mold -- 1.4.3. Substrate Preparation and Mounting -- 1.4.4. Adhesive Application and Assembly -- 1.4.5. Cure -- 1.4.6. Specimen Cleaning -- 1.5. Simple Methods for the Preparation of Single Lap Joints Specimens / Edoardo Nicoli -- 1.5.1. Introduction -- 1.5.2. Single Lap Joint (SLJ) Specimens -- 1.5.3. Traditional Methods for SLJ Bonding -- 1.5.4. Idea for a New Fixture for SLJ Bonding -- 1.5.5. Fixture -- 1.6. Preparing Thick Adherend Shear Test Specimens / Lucas F.M. da Silva -- 1.6.1. Introduction -- 1.6.2. Mold -- 1.6.3. Substrate Preparation -- 1.6.4. Adhesive Application and Assembly -- 1.6.5. Cure -- 1.6.6. Specimen Cleaning -- 1.7. Modified Thick Adherend Shear Test / Romain Creac'hcadec -- 1.7.1. Specimen Geometry -- 1.7.2. Bonded Specimen Geometry -- 1.7.3. Machining of the Samples with Beaks -- 1.8. Preparing Butt Joints / Robert D. Adams -- 1.8.1. Introduction -- 1.8.2. Mold -- 1.8.3. Substrate Preparation -- 1.8.4. Adhesive Application and Assembly -- 1.8.5. Cure -- 1.8.6. Specimen Cleaning -- 1.8.7. Alternative Manufacturing Method -- 1.9. Preparing Napkin Ring Specimens / Robert D. Adams -- 1.9.1. Introduction -- 1.9.2. Adherends -- 1.9.3. Joint Manufacture -- Alignment Jig -- 1.9.4. Introduction of the Adhesive -- 1.9.5. Final Specimen Preparation -- 1.10. Preparing T Joint Specimens / Robert D. Adams -- 1.10.1. Introduction -- 1.10.2. Mold -- 1.10.3. Substrates Preparation -- 1.10.4. Adhesive Application and Assembly -- 1.10.5. Cure -- 1.10.6. Specimens Cleaning -- 1.10.7. Results -- 1.11. Preparing Flexible-to-Rigid Peel Specimens / Stefanos Giannis -- 1.11.1. Introduction -- 1.11.2. Mold -- 1.11.3. Adherend Preparation -- 1.11.4. Adhesive Application and Assembly -- 1.11.5. Cure -- 1.11.6. Final Specimen Preparation -- 1.12. Preparing Specimens for Fracture Properties: Double Cantilever Beam and Tapered Double Cantilever Beam / Bamber R.K. Blackman -- 1.12.1. Introduction -- 1.12.2. Bonding Jigs -- 1.12.3. Specimen Dimensions -- 1.12.3.1. DCB Specimens -- 1.12.3.2. TDCB Specimens -- 1.12.4. Substrate Conditioning and Preparation -- 1.12.4.1. Storage and Substrate Conditioning -- 1.12.4.2. Surface Pretreatment -- 1.12.5. Adhesive Application and Forming the Joint -- 1.12.5.1. Adhesive Handling and Application -- 1.12.5.2. Control of Bondline Thickness -- 1.12.5.3. Introduction of the Initial Crack -- 1.12.6. Cure -- 1.12.7. Final Specimen Preparation -- 1.13. Preparing Bonded Wood Double Cantilever Beam (DCB) Specimens / Charles E. Frazier -- 1.13.1. Introduction -- 1.13.2. Aspects of Wood Bonding -- 1.13.3. Sample Preparation -- 1.13.3.1. Wood Preparation -- 1.13.3.2. Adhesive Types -- 1.13.3.3. DCB Specimen Preparation -- 1.13.3.4. Judging the Sample Quality by Adhesive Penetration -- 1.14. Modified Arcan Test / Romain Creac'hcadec -- 1.14.1. Arcan-Type Device -- 1.14.2. Modified Arcan Test -- 1.14.3. Interfaces Assembly Machine -- 1.14.4. Stress Distribution in the Joint -- References -- 2. Quasi-Static Constitutive and Strength Tests -- 2.1. Quasi-Static Testing of Bulk Tensile Specimens / Lucas F.M. da Silva -- 2.1.1. Introduction -- 2.1.2. Specimen Geometry -- 2.1.3. Gripping System -- 2.1.4. Load and Displacement Measurement -- 2.1.5. Testing Speed and Environmental Conditions -- 2.1.6. Properties Determination -- 2.2. Uniaxial and Bulk Compression / Patrick Heuillet -- 2.2.1. Introduction -- 2.2.2. Uniaxial Compression -- Experimental Methods -- 2.2.2.1. Rubbery and Soft Materials -- 2.2.2.2. Stiffer Materials -- 2.2.3. Hydrostatic Compression -- Experimental Methods -- 2.2.3.1. Rubbery and Soft Materials -- 2.2.3.2. Stiffer Material -- 2.2.4. Hydrostatic Compression -- Testing Device -- 2.2.5. Hydrostatic Compression -- Pressure and Change in Volume Measurement -- 2.2.6. Hydrostatic Compression -- Testing Procedure -- 2.2.7. Hydrostatic Compression -- Results and Bulk Modulus Determination -- 2.3. Quasi-Static Testing of Bulk Compression on Flat Specimens / Lucas F.M. da Silva -- 2.3.1. Introduction -- 2.3.2. Specimen Geometry -- 2.3.3. Loading System -- 2.3.4. Load and Displacement Measurement -- 2.3.5. Testing Speed and Environmental Conditions -- 2.3.6. Properties Determination -- 2.4. Iosipescu (V-Notched Beam) Test / Bruce Duncan -- 2.4.1. Introduction -- 2.4.2. Test Specimens -- 2.4.3. Test Fixtures -- 2.4.4. Strain Measurement Principles -- 2.4.5. Accuracy and Reliability of the Iosipescu Method -- 2.5. Arcan (V-Notched Plate) Test / Bruce Duncan -- 2.5.1. Introduction -- 2.5.2. Test Fixtures and Specimens -- 2.5.3. Measurement Principles -- 2.6. Quasi-Static Testing of Butt Joints in Tension / Gregory L. Anderson -- 2.6.1. Introduction -- 2.6.2. Sample Geometry -- 2.6.3. Sample Preparation -- 2.6.4. Sample Testing -- 2.7. Shear Properties of Adhesives Measured by Napkin Rings and Solid Butt Joints in Torsion / Robert D. Adams -- 2.7.1. Introduction -- 2.7.2. Napkin Ring Test -- 2.7.3. Solid Butt Joint -- 2.7.4. Test Specimen -- 2.7.5. Torsion Machine -- 2.7.6. Measurement of Rotation -- 2.7.7. Some Typical Results -- 2.8. Quasi-Static Testing of Thick Adherend Shear Test Specimens / Lucas F.M. da Silva -- 2.8.1. Introduction -- 2.8.2. Specimen Geometry -- 2.8.3. Adherends -- 2.8.4. Griping System -- 2.8.5. Load and Displacement Measurement -- 2.8.6. Testing Speed and Environmental Conditions -- 2.8.7. Failure Modes -- 2.8.8. Properties Determination -- 2.9. Modified Thick Adherend Shear Test / Romain Creac'hcadec -- 2.9.1. Measurement -- 2.9.2. Analysis of Experimental Results -- 2.9.3. Simplified Identification Method -- 2.9.4. Influence of Adhesive Thickness -- 2.9.5. Behavior under Cyclic Loadings -- 2.9.6. Experimental Requests -- 2.10. Quasi-Static Testing of Lap Joints / Lucas F.M. da Silva -- 2.10.1. Introduction -- 2.10.2. Specimen Geometry -- 2.10.3. Adherends -- 2.10.4. Gripping System -- 2.10.5. Load and Displacement Measurement -- 2.10.6. Testing Speed and Environmental Conditions -- 2.10.7. Failure Modes -- 2.10.8. Properties Determination -- 2.11. Modified Arcan Test / Romain Creac'hcadec -- 2.11.1. Measurement -- 2.11.2. Experimental Results -- 2.11.3. Adhesive Behavior under Shear Loads -- 2.11.4. Strength Envelope in Terms of Stresses -- 2.11.5. Deformation of the Adhesive -- 2.12. Pin-and-Collar Test Method / Miguel A. Martinez -- 2.12.1. Introduction -- 2.12.2. Sample Preparation -- 2.12.2.1. Materials -- 2.12.2.2. Preparation of the Adhesives and Surface Treatment -- 2.12.2.3. Adhesive Application: Procedure and Instrumentation -- 2.12.2.4. Specimen Fitting Out -- 2.12.3. Testing and Result Analysis -- References -- 3. Quasi-Static Fracture Tests -- 3.1. Measuring Bulk Fracture Toughness / Raymond A. Pearson -- 3.1.1. Introduction -- 3.1.2. Principle -- 3.1.3. Procedure -- 3.1.4. Fracture Mechanisms -- 3.1.5. Summary -- 3.2. Quasi-Static Fracture Tests: Double Cantilever Beam and Tapered Double Cantilever Beam Testing / Bamber R.K. Blackman -- 3.2.1. Introduction -- 3.2.2. Test Specimens -- 3.2.3. Test Apparatus -- 3.2.4. DCB Testing -- 3.2.4.1. DCB Testing According to ASTM D3433 -- 3.2.4.2. DCB Testing According to ISO 25217 -- 3.2.5. TDCB Testing -- 3.2.5.1. TDCB Testing According to ASTM D3433 -- 3.2.5.2. TDCB Testing According to ISO 25217 -- 3.2.6. Test Experience -- 3.3. End-Notched Flexure / Raul D.S.G. Campilho -- 3.3.1. Introduction -- 3.3.2. Manufacturing of the Specimens -- 3.3.2.1. Preparation of the Adherends -- 3.3.2.2. Application of the Adhesive -- 3.3.2.3. Final Preparation of the Specimen -- 3.3.3. Testing of the Specimens -- 3.3.3.1. Testing Procedure -- 3.3.3.2. Available Data Reduction Schemes -- 3.4. Mode II Fracture Characterization of Bonded Joints Using the ELS Test / Nuno M.M. Dourado -- 3.4.1. Introduction -- 3.4.2. Specimen Geometry -- 3.4.3. Griping System -- 3.4.4. Load and Displacement Measurement -- 3.4.5. Classical Data Reduction Schemes -- 3.4.6. Equivalent Crack Method -- 3.4.7. Analysis of Results -- 3.5. Notched Torsion Test to Determine the Mode III Fracture Properties of Adhesives / Robert D. Adams -- 3.5.1. Introduction -- 3.5.2. Test Method -- 3.5.3. Determination of Fracture Toughness -- 3.5.4. Some Typical Results -- 3.6. Other Mixed Mode Adhesive Fracture Test Specimens / David A. Dillard -- 3.6.1. Introduction -- 3.6.2. Fixed Ratio Mixed Mode (FRMM) Specimen -- 3.6.3. Single Leg Bend (SLB) Specimen -- 3.6.4. Cracked Lap Shear (CLS) Specimen.
Note continued: 3.6.5. Failure Envelopes -- 3.6.6. Summary -- 3.7. Compact Mixed Mode (CMM) Fracture Test Method / John H.L. Pang -- 3.7.1. Introduction -- 3.7.2. Analysis of CMM Specimen with an Interlayer Crack -- 3.7.3. Analysis of CMM Specimen with an Interface Crack -- 3.7.4. Mixed Mode Fracture Toughness Test and Results -- 3.7.4.1. CMM Specimen Fracture Toughness for Interlayer Crack -- 3.7.4.2. CMM Specimen Fracture Toughness for Interface Crack -- 3.8. Mixed Mode Bending (MMB) with a Reeder and Crews Fixture / Peter Davies -- 3.8.1. Introduction -- 3.8.2. Specimen Geometry -- 3.8.3. Test Fixture -- 3.8.4. Test Procedure -- 3.8.5. Data Analysis -- 3.8.6. Test Experience -- 3.9. Mixed Mode Fracture Testing / Jan K. Spelt -- 3.9.1. Introduction and Background -- 3.9.2. Specimen Configuration and Preparation -- 3.9.3. Fracture Test and Loading System -- 3.9.4. Load and Crack Length Measurement -- 3.9.5. Calculation of Fracture Energy and Phase Angle -- 3.9.5.1. Beam Theory -- 3.9.5.2. Beam-on-Elastic-Foundation Model -- 3.9.6. Fracture Energy Envelopes -- 3.9.7. R-Curve Measurement -- 3.10. Fracture of Wood Double Cantilever Beam (DCB) Specimens / Charles E. Frazier -- 3.10.1. Introduction -- 3.10.2. Factors Influencing Fracture in Wood -- 3.10.3. Bonded Wood Testing -- 3.10.4. Analysis of Fracture Data of Bonded Wood -- 3.11. T-Peel Test / David A. Dillard -- 3.11.1. Introduction -- 3.11.2. T-Peel Test Configurations and Fracture Mechanics Interpretation -- 3.11.3. Specimen Preparation -- 3.11.4. Testing -- 3.11.5. Interpreting Results -- 3.11.6. Locus of Failure -- 3.11.7. Summary -- 3.12. Peel Testing at 180° / Stefanos Giannis -- 3.12.1. Introduction -- 3.12.2. Specimens -- 3.12.3. Test Machine, Fixtures, and Procedure -- 3.12.4. Data Collection and Analysis -- 3.12.5. Failure Mode Identification -- 3.13. Floating Roller Peel Test / Robert D. Adams -- 3.13.1. Introduction -- 3.13.2. Test Specifications -- 3.13.3. Finite Element Analysis and Experimental Investigation of the Peel Test -- 3.14. Climbing Drum Peel Test / Keith B. Armstrong -- 3.14.1. Introduction -- 3.14.2. Materials -- 3.14.3. Test Procedure -- 3.14.4. Failure Modes -- 3.14.5. Results -- 3.15. Analysis of Peel Tests / Luiz F. Kawashita -- 3.15.1. Introduction and Background -- 3.15.2. Definition of Adhesive Fracture Energy -- 3.15.3. Determination of Plastic Work in Bending -- 3.15.4. Determination of Root Rotation Using a Beam on Elastic Foundation Analysis -- 3.15.5. Determination of the Adhesive Fracture Energy Using ICPeel (Digitized) -- 3.15.6. Analysis of T-Peel Tests -- References -- 4. Higher Rate and Impact Tests -- 4.1. Dynamic Elastic Modulus / Robert D. Adams -- 4.1.1. Introduction -- 4.1.2. Dynamic Tensile Modulus -- 4.1.3. Dynamic Shear Modulus -- 4.2. Pendulum Impact Test for Adhesives and Adhesive Joints / Robert D. Adams -- 4.2.1. Introduction -- 4.2.2. Izod and Charpy Tests -- 4.2.3. ASTM Block Impact Test -- 4.2.4. Instrumented Pendulum Impact Test -- 4.3. Higher Rate and Impact Tests: Fracture at High Rates / Bamber R.K. Blackman -- 4.3.1. Introduction -- 4.3.2. High-Rate Mode I Testing -- 4.3.2.1. Introduction -- 4.3.2.2. Experimental Considerations -- 4.3.2.3. Analytical Considerations -- 4.3.2.4. Fracture Behavior -- 4.3.3. High-Rate Mode II and Mixed-Mode Testing -- 4.3.4. Test Experience -- 4.4. High-Strain-Rate Testing of Adhesive Specimens and Joints by Hopkinson Bar Technique / Marco Peroni -- 4.4.1. Introduction -- 4.4.2. Hopkinson Bar Techniques -- 4.4.3. Specimens Preparation and Geometries -- 4.4.4. Processing of the Results and Discussion -- 4.5. Clamped Hopkinson Bar / Chiaki Sato -- 4.5.1. Introduction -- 4.5.2. Clamped Hopkinson Bar Equipment -- 4.5.2.1. Configuration -- 4.5.2.2. Principles -- 4.5.3. Impact Strength Determination of Adhesively Bonded Joints -- 4.5.3.1. Tensile Impact Tests -- 4.5.3.2. Torsional Impact Tests -- 4.5.3.3. Combined Impact Tests -- 4.6. Testing of Adhesive Bonds under Peel and Shear Loads at Increased Velocities / Stefan Kreling -- 4.6.1. Introduction -- 4.6.2. Single Lap Shear Tests at Elevated Testing Velocities -- 4.6.2.1. Materials and Specimen Preparation -- 4.6.2.2. Testing -- 4.6.3. Combined Peel and Pull Loads (Short Peel Specimen) -- 4.6.3.1. Specimen Geometry -- 4.6.3.2. Manufacturing and Testing of Short Peel Specimen -- 4.6.4. Interpretation of Test Results -- References -- 5. Durability -- 5.1. Measurement of the Diffusion Coefficient / Stefanos Giannis -- 5.1.1. Introduction -- 5.1.2. Mechanisms of Diffusion -- 5.1.3. Mass Uptake and Diffusion Coefficient Measurement -- 5.1.4. Specimens -- 5.1.5. Procedure -- 5.1.6. Applicability -- 5.2. Tests with Moisture / Peter Davies -- 5.2.1. Introduction -- 5.2.2. Standard Sample Conditioning -- 5.2.3. Conditioning Equipment -- 5.2.4. Bulk Adhesive Conditioning -- 5.2.5. Adhesive Assembly Conditioning -- 5.2.6. Improved Test Procedure -- 5.3. Durability Testing Using Open-Faced Specimens / Jan K. Spelt -- 5.3.1. Introduction -- 5.3.2. Specimen Preparation and Configuration -- 5.3.2.1. Primary Bonding -- 5.3.2.2. Aging -- 5.3.2.3. Secondary Bonding -- 5.3.3. Fracture Testing -- 5.3.4. Fatigue Testing -- 5.4. Tests with Temperature / Paul Ludwig Geiss -- 5.4.1. Introduction -- 5.4.2. General Test Procedures -- 5.4.3. Compilation of Test Results -- 5.4.4. Lifetime Prediction -- 5.4.5. Standards Related to Creep Testing at Elevated Temperatures -- 5.5. Wedge Test / Jacques Cognard -- 5.5.1. Introduction -- 5.5.2. Mechanics of the Wedge Test -- 5.5.3. Experimental Details -- 5.5.3.1. Dimensions -- 5.5.3.2. Measurements of Fracture Length -- 5.5.3.3. Variations -- 5.5.4. Results -- 5.5.4.1. Value of the Fracture Energy -- 5.5.5. WT and the Evaluation of Durability -- 5.5.5.1. Influence of the Temperature -- 5.5.5.2. Influence of the Environment -- 5.5.5.3. Water -- 5.5.5.4. Relative Humidity -- 5.5.5.5. Surface Treatment -- 5.5.6. Correlation between WT and Normal Use -- 5.6. Fatigue / Erol Sancaktar -- 5.6.1. Introduction -- 5.6.2. Static Fatigue and Delayed Failure of Adhesive Joints -- 5.6.2.1. Creep and Delayed Failure -- 5.6.2.2. Examples of Temperature-Dependent Delayed Failure Behavior -- 5.6.3. Dynamic Fatigue of Adhesive Joints under Monotonic and Cyclic Loading Conditions -- 5.6.3.1. Cyclic Loading Fatigue -- 5.6.3.2. Strain Energy Release Rates -- 5.6.3.3. Crack Propagation under Mixed-Mode Cyclic Loading -- 5.6.3.4. Examples of Mixed-Mode Fatigue Measurements with the Use of ILLMS -- 5.6.3.5. Results and Discussion on Examples of Mixed-Mode Fatigue Measurements with the Use of ILLM Specimen -- 5.7. Mixed-Mode Fatigue Testing of Adhesive Joints / Jan K. Spelt -- 5.7.1. Introduction -- 5.7.2. Specimen Preparation -- 5.7.3. Fatigue Testing -- 5.7.3.1. Fatigue Loading -- 5.7.3.2. Crack Length Measurement -- 5.7.3.3. Strain Energy Release Rate Calculation -- 5.7.4. Observations -- 5.7.4.1. Effect of Mode Ratio and Applied G -- 5.7.4.2. Effect of Bondline Thickness -- 5.7.4.3. Effect of Substrate Material -- 5.8. Measurement of Time-Dependent Crack Growth / Jan K. Spelt -- 5.8.1. Introduction -- 5.8.2. Measurement of Creep Crack Growth -- 5.8.3. Discussion -- 5.9. Curvature Mismatch Fracture Test for Subcritical Debonding / David A. Dillard -- 5.9.1. Introduction -- 5.9.2. Curvature Mismatch Specimen Configuration -- 5.9.3. Preparing Specimens -- 5.9.4. Conducting Tests -- 5.9.5. Data Analysis -- 5.9.6. Specimen Adaptations -- References -- 6. Other Test Methods -- 6.1. Thermal Characterization / John Comyn -- 6.1.1. Thermal Properties of Adhesives -- 6.1.2. Methods Available -- 6.1.3. Instrumental Methods -- 6.1.3.1. Differential Scanning Calorimetry -- 6.1.3.2. Thermomechanical Analysis -- 6.1.3.3. Dynamic Mechanical Thermal Analysis -- 6.1.3.4. Thermogravimetric Analysis -- 6.1.3.5. Thermal Conductivity of Adhesives -- 6.1.4. Other Methods -- 6.1.4.1. Dilatometry -- 6.1.4.2. Minimum Film Formation Temperature of Latex Adhesives -- 6.1.4.3. Torsion Pendulum -- 6.2. Dynamic Mechanical Analysis with a Vibrating Beam Method / Robert D. Adams -- 6.2.1. Introduction -- 6.2.2. Manual Damping Measurement -- 6.2.3. Automatic Damping Measurement -- 6.3. Bimaterial Curvature Method for Residual Stress and Thermal Expansion Coefficient Determination / Yongqiang Li -- 6.3.1. Introduction -- 6.3.2. Specimen Configuration -- 6.3.3. Specimen Preparation -- 6.3.4. Conducting Tests -- 6.3.5. Analysis -- 6.3.6. Summary -- 6.4. Pull-Off Test / David A. Dillard -- 6.4.1. Introduction -- 6.4.2. Specimen Configuration and Analysis -- 6.4.3. Testing Procedure and Analysis -- 6.4.4. Specimen Options -- 6.4.5. Summary -- 6.5. Shaft-Loaded Blister Test / Kai-tak Wan -- 6.5.1. Introduction -- 6.5.2. Loading Configuration: SLBT -- 6.5.3. Theoretical Model (SLBT) -- 6.5.4. Circular Punch Test (CPT): a Modified Shaft-Loaded Blister Test -- 6.5.5. Theoretical Model (CPT) -- 6.6. Tests under Hydrostatic Pressure / Peter Davies -- 6.6.1. Introduction -- 6.6.2. Test Fixture -- 6.6.3. Test Procedure -- 6.6.4. Data Analysis -- References.
Subject Adhesive joints.
Adhesive joints -- Testing.
Adhesive joints. (OCoLC)fst00796605
Adhesive joints -- Testing. (OCoLC)fst00796610
Klebeverbindung (DE-588)4125366-8
Werkstoffprüfung (DE-588)4037934-6
Genre/Form Electronic books.
Added Author Silva, Lucas Filipe Martins da, 1973-
Other Form: Print version: Testing adhesive joints. Weinheim : Wiley-VCH, ©2012 9783527329045 (OCoLC)813408667
ISBN 9783527647026 (electronic bk.)
3527647023 (electronic bk.)
3527647058 (ePDF)
9783527647057 (ePDF)
352764704X (ePub)
9783527647040 (ePub)
3527647031 (mobi)
9783527647033 (mobi)
9783527329045 (hbk.)
3527329048 (hbk.)
9783527647057 (ePDF)
9783527647040 (ePub)
9783527647033 (mobi)
9783527647026 (oBook)
Standard No. AU@ 000050378575
CHNEW 000940924
CHVBK 480211957
DEBBG BV041829434
DEBBG BV041907425
DEBSZ 48502974X
NZ1 15916299

 
    
Available items only