Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Emerging nanotechnologies in dentistry : materials, processes, and applications / edited by Karthikeyan Subramani and Waqar Ahmed.

Imprint Amsterdam : Elsevier, ©2018.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition 2nd ed.
Description 1 online resource : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references and index.
Summary Emerging Nanotechnologies in Dentistry, Second Edition, brings together an international team of experts from the fields of materials science, nanotechnology and dentistry to explain these new materials and their applications for the restoration, fixation, replacement or regeneration of hard and soft tissues in and about the oral cavity and craniofacial region. New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). Each chapter has been comprehensively revised from the first edition, and new chapters cover important advances in graphene based materials for dentistry, liposome based nanocarriers and the neurotoxicity of nanomaterials used in dentistry.
Contents Machine generated contents note: ch. 1 Nanotechnology and its applications in dentistry -- An introduction / Waqar Ahmed -- 1.1. Introduction -- 1.2. Nanotechnology Approaches -- 1.3. Nanotechnology to Nanomanufacturing -- 1.3.1. Top-Down Approach -- 1.3.2. Bottom-Up Approach -- 1.4. Nanodentistry -- 1.5. Future Directions and Conclusions -- References -- ch. 2 Nanoparticles for dental materials: Synthesis, analysis, and applications / Sumita B. Mitra -- 2.1. Introduction: Why Use Nanoparticles? -- 2.2. Synthesis of Nanoparticles -- 2.2.1. Synthesis by Mechanical Attrition -- 2.2.2. Synthesis Through Sol -- Gel Process -- 2.2.3. Synthesis of Silsesquioxane Nanoparticles -- 2.2.4. Synthesis of Polymer-Templated Nanoparticles -- 2.3. Examples of Dental Materials Using Nanoparticles -- 2.3.1. Nanocomposites Containing Oxide Nanoparticles -- 2.3.2. Silsequioxane-Based Composites -- 2.3.3. Calcium Phosphate and Calcium Fluoride Nanoparticles-Based Composites -- 2.3.4. Nanoparticles in Glass Ionomer Systems -- 2.3.5. Nanotechnology in Dental Adhesives -- 2.4. Selected Properties of Dental Materials Containing Nanoparticles -- 2.4.1. Optical Properties -- 2.4.2. Wear Properties -- 2.4.3. From B.D. Craig, S.B. Mitra, G.A. Kobussen, M.C. Doruff, H.L. Lechuga, M.R. Atkinson, Polish Retention Comparison of Experimental and Commercial Restorative Composite Materials, J. Dent. Res. 88, (2009) (Spec Issue A Abstract 1506). Mechanical Properties -- 2.5. Clinical Experience With Dental Materials Containing Nanoparticles -- 2.6. Conclusions -- References -- ch. 3 Antimicrobial nanoparticles in restorative composites / Abraham J. Domb -- 3.1. Introduction -- 3.2. Antibacterial Restorative Composites -- 3.2.1. Filler Phase Modification -- 3.2.2. Matrix Phase Modification -- 3.3. Antimicrobial Macromolecules -- 3.3.1. Polycationic Disinfectants -- 3.3.2. Polyethyleneimine -- 3.4. Nanoparticles -- 3.4.1. Polyethylenimine Nanoparticles -- 3.5. Conclusions -- References -- ch. 4 Nanotechnology in operative dentistry: A perspective approach of history, mechanical behavior, and clinical application / Karthikeyan Subramani -- 4.1. Introduction -- 4.2. Historical Review: Nanotechnology Applications in Operative Dentistry -- 4.3. Biomimetics -- 4.4. Nanotechnology in CAD/CAM -- 4.5. Fillers in Composite Resins -- 4.6. SEM and EDS Evaluations -- 4.7. Filler Weight Content (wt%) -- 4.8. Water Sorption -- 4.9. Mechanical Behavior -- 4.9.1. Compressive Strength -- 4.9.2. Diametral Tensile Strength -- 4.9.3. Flexural Strength and Flexural Modulus -- 4.9.4. Microhardness -- 4.9.5. Nanohardness -- 4.9.6. Wear Resistance -- 4.10. Clinical Application -- 4.11. Conclusions -- Acknowledgments -- References -- ch. 5 Impact of nanotechnology on dental implants / Pierre Layrolle -- 5.1. Introduction -- 5.2. Nanoscale Surface Modifications -- 5.3. Interactions of Surface Dental Implants With Blood -- 5.4. Interactions Between Surfaces and MSCs -- 5.4.1. Origin of MSCs -- 5.4.2. Migration, Adhesion, and Proliferation -- 5.4.3. Differentiation -- 5.5. Tissue Integration -- 5.6. Conclusion -- Acknowledgments -- References -- ch. 6 Titanium surface modification techniques for dental implants -- From microscale to nanoscale / Preeti Pachauri -- 6.1. Introduction -- 6.2. Titanium Surface Modification Methods -- 6.2.1. Mechanical Modification of Titanium Surface -- 6.2.2. Physicochemical Modification of Titanium Surface -- 6.2.3. Biochemical Modification of Titanium Surface -- 6.2.4. Physical Modification of Titanium Surface -- 6.3. Recent Techniques -- 6.3.1. Discrete Crystalline Deposition (DCD) -- 6.3.2. Laser Ablation -- 6.3.3. Titanium Oxide Blasted and Acid-Etched Implants -- 6.3.4. Photofunctionalization -- 6.4. Limitations & Conclusion -- Acknowledgments -- References -- ch. 7 Titanium nanotubes as carriers of osteogenic growth factors and antibacterial drugs for applications in dental implantology / Preeti Pachauri -- 7.1. Introduction -- 7.2. Titanium Nanotubes -- 7.3. TiO2 Nanotubes for Implant Fabrication -- 7.4. Functionalization of TiO2 Nanotubes with Growth Factors and Antibacterial/Antiinflammatory Drugs -- 7.5. Recent Advancements -- 7.6. Conclusions -- References -- ch. 8 Cellular responses to nanoscale surface modifications of titanium implants for dentistry and bone tissue engineering applications / Kytai T. Nguyen -- 8.1. Introduction -- 8.2. Nanotopography Generated from Surface Modification of Ti Implants -- 8.2.1. Surface Modification of Ti Implants With Inorganic Materials/Nanoparticles -- 8.2.2. Surface Modifications of Ti Implants With Polymers -- 8.3. Nanotopography and Protein Absorption -- 8.4. Nanotopography Alters Osteoblast Responses -- 8.4.1. Cell Morphology -- 8.4.2. Cell Adhesion -- 8.4.3. Cell Proliferation -- 8.4.4. Bioactive Molecules -- 8.4.5. Osseointegration -- 8.5. Nanotopography and Stem Cell Responses -- 8.5.1. Effects of Nanotopography on Endothelial Progenitor Cells -- 8.5.2. Effects of Nanotopography on Bone Marrow Stem Cells -- 8.6. Conclusions -- References -- ch. 9 Corrosion resistance of Ti -- 6A1 -- 4V with nanostructured TiO2 coatings / Anhong Zhou -- 9.1. Introduction -- 9.1.1. SiO2 -- CaO Coatings on Ti -- 6A1 -- 4V Alloys -- 9.1.2. SiO2 and SiO2 -- TiO2 Intermediate Coatings on Titanium and Ti -- 6A1 -- 4V Alloy -- 9.1.3. Coated Hydroxyapatite on Ti -- 6A1 -- 4V by Electrophoretic Deposition -- 9.1.4. Double-Layer Glass-Ceramic Coatings on Ti -- 6A1 -- 4V -- 9.2. Nanostructured TiO2 Deposited on Ti -- 6A1 -- 4V -- 9.2.1. Preparation of the Ti -- 6A1 -- V Electrode -- 9.2.2. TiO2 Nanoparticles Coating -- 9.3. Characterization Techniques -- 9.3.1. Scanning Electron Microscopy -- 9.3.2. Raman Microscopy -- 9.4. Corrosion Test With Electrochemical Techniques -- 9.4.1. Open-Circuit Voltage (OCV) and Tafel Analysis -- 9.4.2. Electrochemical Impedance Spectroscopy -- 9.5. Conclusion -- References -- ch. 10 Multiwalled Carbon nanotubes/hydroxyapatite nanoparticles incorporated GTR membranes / Xiaoping Yang -- 10.1. Introduction -- 10.2. Periodontal Defects and GTR -- 10.2.1. Studies Using Nonresorbable Membranes -- 10.2.2. Studies Using Bioresorbable Membranes -- 10.2.3. Layer-Designed Membranes for GTR -- 10.2.4. Cell-Sheet-Based Technology for GTR -- 10.3. Use of Electrospinning for Preparation of Nanocomposites -- 10.3.1. Electrospinning -- 10.3.2. Carbon Nanotubes Incorporated Into Nanofibers -- 10.3.3. Organic -- Inorganic Composite Nanofibers -- 10.4. GTR Membranes Based on Electrospun CNT/HA Nanoparticles Incorporated Composite Nanofibers -- 10.4.1. Fabrication of MWCNTs/HA Hybrids -- 10.4.2. Electrospun Nanofibers With Different Fiber Arrangements -- 10.4.3. Fabrication of PLLA/MWCNTs/HA Composite Nanofibers -- 10.4.4. Characterization of PLLA/MWCNTs/HA Composite Nanofibers -- 10.4.5. Cell Culture on PLLA/MWCNTs/HA Composite Nanofibers Membranes -- 10.4.6. In Vivo Implantation of PLLA/MWCNTs/HA Membranes -- 10.5. Conclusions -- References -- ch. 11 Nanoapatitic composite scaffolds for stem cell delivery and bone tissue engineering / Carl G. Simon -- 11.1. Introduction -- 11.2. Development of Nanoapatitic and Macroporous Scaffolds -- 11.3. Cell Infiltration into Scaffold -- 11.4. Biomimetic Nanoapatite -- Collagen Fiber Scaffold -- 11.5. Fast Fracture of Nanoapatite Scaffold -- 11.6. Fatigue of Nanoapatite Scaffold -- 11.7. Nanoapatite Scaffold -- Human Umbilical Cord Stem Cell Interactions -- 11.8. Seeding Bone Marrow Stem Cells on Nanoapatite Scaffolds -- 11.9. Conclusions -- Acknowledgments -- References -- ch.
12 Self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry / Waqar Ahmed -- 12.1. Introduction -- 12.2. Mechanism of Molecular Self-Assembly -- 12.3. Classification of Self-Assembly -- 12.4. Self-Assembly of Proteins and Peptides -- 12.5. Bionanotechnology Applications -- 12.6. Peptide Nanofibers, Nanotubes, and Nanowires -- 12.7. Three-Dimensional Peptide Matrix Scaffolds -- 12.8. Advantages and Limitations of Self-Assembling Peptide Matrix Scaffolds -- 12.9. Self-Assembly in Regenerative Biology and Dentistry -- 12.10. Conclusions -- References -- ch. 13 Surface engineering of dental tools with diamond for enhanced life and performance / Karthikeyan Subramani -- 13.1. Tooth Materials -- 13.2. Dental Burs -- 13.3. Chemical Vapor Deposition of Diamond Films Onto Dental Burs -- 13.3.1. Plasma-Enhanced CVD -- 13.3.2. Hot Filament CVD -- 13.3.3. Controlling Structure and Morphology -- 13.4. Bur Performance Investigations -- 13.4.1. Tool Preparation -- 13.4.2. CVD Diamond Deposition on the Dental Burs -- 13.4.3. Dental Bur Machining: Drilling Experiments -- 13.4.4. Dental Bur Machining: Machining Experiments on Human Teeth -- 13.4.5. Performance Testing -- 13.4.6. Drilling Experiments -- 13.4.7. Performance Results -- 13.5. Conclusions -- References -- Further Reading -- ch. 14 Nanomechanical characterization of mineralized tissues in the oral cavity / Nigel M. King -- 14.1. Introduction -- 14.2. Basic Data Analysis Protocol for Nanoindentation -- 14.3. Nanoindentation of Oral Mineralized Tissues -- 14.3.1. Sample Preparation -- 14.3.2. Hydration -- 14.3.3. Indenter Tips -- 14.3.4. Load Function and Data Analysis -- 14.3.5. Microstructural Influence -- 14.4. Summary -- References -- Further Reading.
Note continued: ch. 15 Nanoindentation techniques for the determination of mechanical properties of materials in dentistry / Jaraslov Mencik -- 15.1. Introduction -- 15.2. Basic Information From the Load-Displacement Curves -- 15.2.1. Hardness and Elastic Modulus -- 15.2.2. Harmonic Contact Stiffness -- 15.2.3. Work of Indentation and Other Information From P -- h Curves -- 15.2.4. Indenter Calibration -- 15.3. Characterization of Inelastic Properties -- 15.3.1. Stress -- Strain Diagram -- 15.3.2. Yield Stress -- 15.4. Determination of Properties in Nonhomogeneous Bodies -- 15.4.1. Surface Layers and Coatings -- 15.4.2. Multiphase Microstructure -- 15.5. Characterization of Time-Dependent Load Response -- 15.6. Resistance Against Crack Propagation -- 15.7. Scratch Tests for the Evaluation of Friction and Wear Resistance -- 15.8. Devices for Nanoindentation -- Acknowledgments -- References -- ch. 16 Nanocharacterization techniques for dental implant development / Dermot Brabazon -- 16.1. Measurement of the Topology of Nanostructures -- 16.1.1. Field Emission Scanning Electron Microscope -- 16.1.2. Scanning Probe Microscopy -- 16.1.3. Confocal Microscopy and Interferometry -- 16.2. Measurement of Nanostructure Internal Geometries -- 16.2.1. Transmission Electron Microscope -- 16.2.2. Focused Ion Beam -- 16.2.3. X-Ray Diffraction -- 16.2.4. Mercury Porosimetry -- 16.3. Measurement of Composition of Nanostructures -- 16.3.1. Energy Dispersive X-Ray Spectroscopy -- 16.3.2. X-Ray Photoelectron Spectroscopy -- 16.3.3. Secondary Ion Mass Spectroscopy -- 16.3.4. Auger Electron Spectroscopy -- 16.4. Measurement of the Mechanical Properties of Nanostructures -- 16.4.1. Nanoscratch Testing -- 16.4.2. Nanohardness Test -- 16.5. Conclusions -- References -- ch. 17 Nanoparticulate drug-delivery systems for oral cancer treatment / Waqar Ahmed -- 17.1. Introduction -- 17.2. Cancer-Treatment Techniques -- 17.3. Mechanism of Action of Chemotherapeutic Agents -- 17.3.1. Prevention of Synthesis of Pre-DNA Molecule Building Blocks -- 17.3.2. Chemical Damage of DNA in the Cell Nuclei -- 17.4. Oral Cancer -- 17.5. TNM Classification of Tumors -- 17.6. Management of Oral Cancer -- 17.7. Nanoparticulate-Based Drug Delivery in Cancer Treatment -- 17.7.1. Gold Nanoparticles for Anticarcinogenic Drug Delivery -- 17.7.2. Liposomes in Oral Cancer Treatment -- 17.7.3. Magnetic Nanoparticles in Oral Cancer Treatment -- 17.7.4. Polymeric micelles as Drug-Delivery Systems -- 17.8. Limitations of Nanoparticles and Conclusion -- References -- ch. 18 Carbon nanotubes: Applications in cancer therapy and drug delivery research / Karthikeyan Subramani -- 18.1. Introduction -- 18.2. Cellular Uptake of CNTs -- 18.3. CNTs as Carriers for Small and Large Drug Molecules -- 18.3.1. CNTs as Carriers of Small Anticancer Molecules -- 18.3.2. CNTs as Carriers of Immunoactive Molecules, Proteins, and Genetic Materials -- 18.3.3. CNTs as Carriers for Antimicrobial Molecules -- 18.3.4. Photothermal Therapy of Cancer Using CNTs -- 18.4. Carbon Nanotubes for Oral Cancer Therapy -- 18.5. Conclusion -- References -- ch. 19 Nanodiagnostics in microbiology and dentistry / Manjula Mehta -- 19.1. Introduction -- 19.2. Nanomaterials -- 19.2.1. Applications of Nanomaterials -- 19.3. Biomedical Applications of Nanotechnology and Its Limitations -- 19.4. Nanotechnology Applications in Drug-Delivery Systems, Nanodiagnostics, and Various Other Fields -- 19.4.1. Drug-Delivery System -- 19.4.2. Nanodiagnostics and Disease Prevention -- 19.4.3. Disease Prevention -- 19.4.4. Other Applications -- 19.5. Contribution of Microbiology to Nanotechnology -- 19.6. AFM Imaging of Microorganisms -- 19.6.1. Yeast -- 19.6.2. Bacteria -- 19.6.3. AFM Study of the Structure -- Function Relationship of the Biofilm-Forming Bacterium Streptococcus mutans -- 19.6.4. Viruses -- 19.7. Nanoplasmonic Sensors Detecting Live Viruses -- 19.8. Nanodentistry -- 19.8.1. Impact of Nanotechnology -- 19.8.2. Nanotechnology in Periodontics -- 19.9. Conclusions -- References -- ch. 20 Neurotoxicity of nanomaterials / Shao Longquan -- 20.1. Introduction -- 20.2. Possible Dental Nanomaterials -- 20.2.1. Composite Resins and Bonding Systems -- 20.2.2. Root-Filling Materials -- 20.2.3. Bioceramics and Associated Dental Prosthesis -- 20.2.4. Surface Modifications for Dental Implants -- 20.2.5. Target-Delivery and Imaging in Tumor Chemotherapy -- 20.3. Neurotoxicity of Dental Nanomaterials -- 20.3.1. Possible Pathways into the CNS -- 20.3.2. In Vivo Toxicity Studies -- 20.3.3. In Vitro Toxicity Studies -- 20.3.4. Major Toxicity Mechanisms -- 20.4. Future Research Prospects -- 20.5. Conclusion -- Acknowledgments -- References.
Subject Dentistry -- Technological innovations.
Nanotechnology.
Nanotechnology
Dentisterie -- Innovations.
Nanotechnologie.
MEDICAL -- Surgery -- General.
Nanotechnology
Added Author Subramani, Karthikeyan.
Ahmed, Waqar.
Other Form: Print version: 9780128122914 0128122919 (OCoLC)974699002
ISBN 9780128122921 (electronic bk.)
0128122927 (electronic bk.)
9780128122914
0128122919
Standard No. GBVCP 100748523X

 
    
Available items only