Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Rohani, Sohrab, author.

Title Coulson and Richardson's chemical engineering. Volume 3B, Process control / Sohrab Rohani.

Publication Info. Kidlington, Oxford : Butterworth-Heinemann, 2017.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition Fourth edition.
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Includes index.
Online resource; title from PDF title page (EBSCO, viewed September 11, 2017).
Summary Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control, Fourth Edition, covers reactor design, flow modeling, and gas-liquid and gas-solid reactions and reactors. Converted from textbooks into fully revised reference materialContent ranges from foundational through to technical Added emerging applications, numerical methods and computational tools.
Contents Machine generated contents note: ch. 1 Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1.A Single Continuous Process -- 1.1.2.A Batch and a Semibatch or a Fed-Batch Process -- 1.2. Process Dynamics -- 1.2.1. Classification of Process Variables -- 1.2.2. Dynamic Modeling -- 1.3. Process Control -- 1.3.1. Types of Control Strategies -- 1.4. Incentives for Process Control -- 1.5. Pictorial Representation of the Control Systems -- 1.6. Problems -- References -- ch. 2 Hardware Requirements for the Implementation of Process Control Systems -- 2.1. Sensor/Transmitter -- 2.1.1. Temperature Transducers -- 2.1.2. Pressure Transducers -- 2.1.3. Liquid or Gas Flow Rate Transducers -- 2.1.4. Liquid Level Transducers -- 2.1.5. Chemical Composition Transducers -- 2.1.6. Instrument or Transducer Accuracy -- 2.1.7. Sources of Instrument Errors -- 2.1.8. Static and Dynamic Characteristics of Transducers -- 2.2. Signal Converters -- 2.3. Transmission Lines -- 2.4. The Final Control Element
Note continued: 2.4.1. Control Valves -- 2.5. Feedback Controllers -- 2.5.1. The PID (Proportional-Integral-Derivative) Controllers -- 2.5.2. The PID Controller Law -- 2.5.3. The Discrete Version of a PID Controller -- 2.5.4. Features of the PID Controllers -- 2.6.A Demonstration Unit to Implement A Single-Input, Single-Output PID Controller Using the National Instrument Data Acquisition (NI-DAQ) System and the LabVIEW -- 2.7. Implementation of the Control Laws on the Distributed Control Systems -- 2.8. Problems -- References -- ch. 3 Theoretical Process Dynamic Modeling -- 3.1. Detailed Theoretical Dynamic Modeling -- 3.2. Solving an ODE or a Set of ODEs -- 3.2.1. Solving a Linear or a Nonlinear Differential Equation in MATLAB -- 3.2.2. Solving a Linear or a Nonlinear Differential Equation on Simulink -- 3.3. Examples of Lumped Parameter Systems -- 3.3.1.A Surge Tank With Level Control -- 3.3.2.A Stirred Tank Heater With Level and Temperature Control
Note continued: 3.3.3.A Nonisothermal Continuous Stirred Tank Reactor -- 3.3.4.A CSTR With Liquid Phase Endothermic Chemical Reactions -- 3.4. Examples of Stage-Wise Systems -- 3.4.1.A Binary Tray Distillation Column -- 3.5. Examples of Distributed Parameter Systems -- 3.5.1.A Plug Flow Reactor -- 3.6. Problems -- References -- ch. 4 Development of Linear State-Space Models and Transfer Functions for Chemical Processes -- pt. A Theoretical Development of Linear Models -- 4.1. Tools to Develop Continuous Linear State-Space and Transfer Function Dynamic Models -- 4.1.1. Linearization of Nonlinear Differential Equations -- 4.1.2. The Linear State-Space Models -- 4.1.3. Developing Transfer Function Models (T.F.) -- 4.2. The Basic Procedure to Develop the Transfer Function of SISO and MIMO Systems -- 4.3. Steps to Derive the Transfer Function (T.F.) Models -- 4.4. Transfer Function of Linear Systems -- 4.4.1. Simple Functional Forms of the Input Signals
Note continued: 4.4.2. First-Order Transfer Function Models -- 4.4.3.A Pure Capacitive or An Integrating Process -- 4.4.4. Processes With Second-Order Dynamics -- 4.4.5. Significance of the Transfer Function Poles and Zeros -- 4.4.6. Transfer Functions of More Complicated Processes -- An Inverse Response (A Nonminimum Phase Process), A Higher Order Process and Processes With Time Delays -- 4.4.7. Processes With Nth-Order Dynamics -- 4.4.8. Transfer Function of Distributed Parameter Systems -- 4.4.9. Processes With Significant Time Delays -- pt. B The Empirical Approach to Develop Approximate Transfer Functions for Existing Processes -- 4.5. The Graphical Methods for Process Identification -- 4.5.1. Approximation of the Unknown Process Dynamics by a First-Order Transfer Function With or Without a Time Delay -- 4.5.2. Approximation by a Second-Order Transfer Function With a Time Delay -- 4.6. Process Identification Using Numerical Methods -- 4.6.1. The Least Squares Method
Note continued: 4.6.2. Using the "Solver" Function of Excel for the Estimation of the Parameter Vector in System Identification -- 4.6.3.A MATLAB Program for Parameter Estimation -- 4.6.4. Using System Identification Toolbox of MATLAB -- 4.7. Problems -- References -- ch. 5 Dynamic Behavior and Stability of Closed-Loop Control Systems -- Controller Design in the Laplace Domain -- 5.1. The Closed-Loop Transfer Function of a Single-Input, Single-Output (SISO) Feedback Control System -- 5.2. Analysis of a Feedback Control System -- 5.2.1.A Proportional Controller -- 5.2.2.A Proportional-Integral (PI) Controller -- 5.3. The Block Diagram Algebra -- 5.4. The Stability of the Closed-Loop Control Systems -- 5.5. Stability Tests -- 5.5.1. Routh Test -- 5.5.2. Direct Substitution Method -- 5.5.3. The Root Locus Diagram -- 5.6. Design and Tuning of the PID Controllers -- 5.6.1. Controller Design Objectives -- 5.6.2. Choosing the Appropriate Control Law -- 5.6.3. Controller Tuning
Note continued: 5.6.4. The Use of Model-Based Controllers to Tune a PID Controller (Theoretical Method) -- 5.6.5. Empirical Approaches to Tune a PID Controller -- 5.7. Enhanced Feedback and Feedforward Controllers -- 5.7.1. Cascade Control -- 5.7.2. Override Control -- 5.7.3. Selective Control -- 5.7.4. Control of Processes With Large Time Delays -- 5.7.5. Control of Nonlinear Processes -- 5.8. The Feedforward Controller (FFC) -- 5.8.1. The Implementation of a Feedforward Controller -- 5.8.2. The Ratio Control -- 5.9. Control of Multiinput, Multioutput (MIMO) Processes -- 5.9.1. The Bristol Relative Gain Array (RGA) Matrix -- 5.9.2. Control of MIMO Processes in the Presence of Interaction Using Decouplers -- 5.10. Problems -- References -- ch. 6 Digital Sampling, Filtering, and Digital Control -- 6.1. Implementation of Digital Control Systems -- 6.2. Mathematical Representation of a Sampled Signal -- 6.3.z-Transform of a Few Simple Functions -- 6.3.1.A Discrete Unit Step Function
Note continued: 6.13.4. The Kalman Controller -- 6.13.5. Internal Model Controller (IMC) -- 6.13.6. The Pole Placement Controller -- 6.14. Design of Feedforward Controllers -- 6.15. Control of Multi-Input, Multi-Output (MIMO) Processes -- 6.15.1. Singular Value Decomposition (SVD) and the Condition Number (CN) -- 6.15.2. Design of Multivariate Feedback Controllers for MIMO Plants -- 6.15.3. Dynamic and Steady-State Interaction Compensators (Decouplers) in the z-Domain -- 6.15.4. Multivariable Smith Predictor -- 6.15.5. Multivariable IMC Controller -- Problems -- References -- Further Reading -- ch. 7 Control System Design in the State Space and Frequency Domain -- 7.1. State-Space Representation -- 7.1.1. The Minimal State-Space Realization -- 7.1.2. Canonical Form State-Space Realization -- 7.1.3. Discretization of the Continuous State-Space Formulation -- 7.1.4. Discretization of Continuous Transfer Functions
Note continued: 7.3.7. Numerical Construction of Bode and Nyquist Plots -- 7.3.8. Applications of the Frequency Response Technique -- 7.4. Problems -- References -- Further Reading -- ch. 8 Modeling and Control of Stochastic Processes -- 8.1. Modeling of Stochastic Processes -- 8.1.1. Process and Noise Models -- 8.1.2. Review of Some Useful Concepts in the Probability Theory -- 8.2. Identification of Stochastic Processes -- 8.2.1. Off-line Process Identification -- 8.2.2. Online Process Identification -- 8.2.3. Test of Convergence of Parameter Vector in the Online Model Identification -- 8.3. Design of Stochastic Controllers -- 8.3.1. The Minimum Variance Controller (MVC) -- 8.3.2. The Generalized Minimum Variance Controllers (GMVC) -- 8.3.3. The Pole Placement Controllers (PPC) -- 8.3.4. The Pole-Placement Minimum Variance Controller (PPMVC) -- 8.3.5. Self-Tuning Regulators (STR) -- 8.4. Problems -- References -- ch. 9 Model Predictive Control of Chemical Processes: A Tutorial
Note continued: 9.1. Why MPC? -- 9.2. Formulation of MPC -- 9.2.1. Process Model -- 9.2.2. Objective Function -- 9.2.3. State and Input Constraints -- 9.2.4. Optimal Control Problem -- 9.2.5. Receding-Horizon Implementation -- 9.2.6. Optimization Solution Methods -- 9.3. MPC for Batch and Continuous Chemical Processes -- 9.3.1. NMPC of a Batch Crystallization Process -- 9.3.2. NMPC of a Continuous ABE Fermentation Process -- 9.4. Output-Feedback MPC -- 9.4.1. Luenberger Observer -- 9.4.2. Extended Luenberger Observer -- 9.4.3. NMPC of the Batch Crystallization Process Under Incomplete State Information -- 9.5. Advanced Process Control -- 9.6. Advanced Topics in MPC -- 9.6.1. Stability and Feasibility -- 9.6.2. MPC of Uncertain Systems -- 9.6.3. Distributed MPC -- 9.6.4. MPC With Integrated Model Adaptation -- 9.6.5. Economic MPC -- Appendix -- Batch Crystallization Case Study -- ABE Fermentation Case Study -- Acknowledgments -- References -- ch. 10 Optimal Control -- 10.1. Introduction
Note continued: 10.2. Problem Statement -- 10.3. Optimal Control -- 10.3.1. Variational Methods -- 10.3.2. Variation of the Criterion -- 10.3.3. Euler Conditions -- 10.3.4. Weierstrass Condition and Hamiltonian Maximization -- 10.3.5. Hamilton-Jacobi Conditions and Equation -- 10.3.6. Maximum Principle -- 10.3.7. Singular Arcs -- 10.3.8. Numerical Issues -- 10.4. Dynamic Programming -- 10.4.1. Classical Dynamic Programming -- 10.4.2. Hamilton-Jacobi-Bellman Equation -- 10.5. Linear Quadratic Control -- 10.5.1. Continuous-Time Linear Quadratic Control -- 10.5.2. Linear Quadratic Gaussian Control -- 10.5.3. Discrete-Time Linear Quadratic Control -- References -- Further Reading -- ch. 11 Control and Optimization of Batch Chemical Processes -- 11.1. Introduction -- 11.2. Features of Batch Processes -- 11.3. Models of Batch Processes -- 11.3.1. What to Model? -- 11.3.2. Model Types -- 11.3.3. Static View of a Batch Process -- 11.4. Online Control
Note continued: 11.4.1. Feedback Control of Run-Time Outputs (Strategy 1) -- 11.4.2. Predictive Control of Run-End Outputs (Strategy 2) -- 11.5. Run-to-Run Control -- 11.5.1. Iterative Learning Control of Run-Time Profiles (Strategy 3) -- 11.5.2. Run-to-Run Control of Run-End Outputs (Strategy 4) -- 11.6. Batch Automation -- 11.6.1. Stand-Alone Controllers -- 11.6.2. Programmable Logic Controllers -- 11.6.3. Distributed Control Systems -- 11.6.4. Personal Computers -- 11.7. Control Applications -- 11.7.1. Control of Temperature and Final Concentrations in a Semibatch Reactor -- 11.7.2. Scale-Up via Feedback Control -- 11.7.3. Control of a Batch Distillation Column -- 11.8. Numerical Optimization -- 11.8.1. Dynamic Optimization -- 11.8.2. Reformulation of a Dynamic Optimization Problem as a Static Optimization Problem -- 11.8.3. Static Optimization -- 11.8.4. Effect of Uncertainty -- 11.9. Real-Time Optimization -- 11.9.1. Repeated Numerical Optimization
Note continued: 11.9.2. Optimizing Feedback Control -- 11.10. Optimization Applications -- 11.10.1. Semibatch Reactor With Safety and Selectivity Constraints -- 11.10.2. Industrial Batch Polymerization -- 11.11. Conclusions -- 11.11.1. Summary -- 11.11.2. Future Challenges -- Acknowledgments -- References -- ch. 12 Nonlinear Control -- 12.1. Introduction -- 12.2. Some Mathematical Notions Useful in Nonlinear Control -- 12.2.1. Notions of Differential Geometry -- 12.2.2. Relative Degree of a Monovariable Nonlinear System -- 12.2.3. Frobenius Theorem -- 12.2.4. Coordinates Transformation -- 12.2.5. Normal Form -- 12.2.6. Controllability and Observability -- 12.2.7. Principle of Feedback Linearization -- 12.2.8. Exact Input-State Linearization for a System of Relative Degree Equal to n -- 12.2.9. Input-Output Linearization of a System With Relative Degree r Less than or Equal to n -- 12.2.10. Zero Dynamics -- 12.2.11. Asymptotic Stability -- 12.2.12. Tracking of a Reference Trajectory
Note continued: 12.2.13. Decoupling With Respect to a Disturbance -- 12.2.14. Case of Nonminimum-Phase Systems -- 12.2.15. Globally Linearizing Control -- 12.2.16. Generic Model Control -- 12.3. Multivariable Nonlinear Control -- 12.3.1. Relative Degree -- 12.3.2. Coordinate Change -- 12.3.3. Normal Form -- 12.3.4. Zero Dynamics -- 12.3.5. Exact Linearization by State Feedback and Diffeomorphism -- 12.3.6. Nonlinear Control Perfectly Decoupled by Static-State Feedback -- 12.3.7. Obtaining a Relative Degree by Dynamic Extension -- 12.3.8. Nonlinear Adaptive Control -- 12.4. Nonlinear Multivariable Control of a Chemical Reactor -- References -- ch. 13 Economic Model Predictive Control of Transport-Reaction Processes -- 13.1. Introduction -- 13.2. EMPC of Parabolic PDE Systems With State and Control Constraints -- 13.2.1. Preliminaries -- 13.2.2. Methodological Framework for Finite-Dimensional EMPC Using APOD -- 13.2.3. Application to a Tubular Reactor Modeled by a Parabolic PDE System
Note continued: 13.3. EMPC of Hyperbolic PDE Systems With State and Control Constraints -- 13.3.1. Reactor Description -- 13.3.2. EMPC System Constraints and Objective -- 13.3.3. State Feedback EMPC of Hyperbolic PDE Systems -- 13.3.4. Output Feedback EMPC of Hyperbolic PDE Systems -- 13.4. Conclusion -- References.
Bibliography Includes bibliographical references and index.
Subject Chemical engineering.
Chemical Engineering
Génie chimique.
chemical engineering.
SCIENCE -- Chemistry -- Industrial & Technical.
TECHNOLOGY & ENGINEERING -- Chemical & Biochemical.
Chemical engineering
Added Title Process control
Other Form: Print version : 9780081010952
ISBN 9780081012246 (electronic bk.)
0081012241 (electronic bk.)
0081010958
9780081010952
9780081010952
Standard No. AU@ 000060696310
AU@ 000068133765
CHNEW 001014496
GBVCP 897846990
UKMGB 018430864

 
    
Available items only