Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc
Author Christ, Robert D., author.

Title The ROV manual : a user guide for remotely operated vehicles / Robert D. Christ, Robert Wernli, sr.

Publication Info. Oxford : Butterworth-Heinemann, 2013.

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Edition Second edition.
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Previous edition: 2007.
Summary Many underwater operations that were once carried out by divers can now be carried out more efficiently and safely with ROVs. Their use has spread rapidly too as the technology has become more efficient and affordable, with application now commonly seen in marine research and surveying, nuclear, hydroelectric and petroleum infrastructure inspection, harbor security and military contexts, among others. The ROV Manual is one of very few dedicated resources covering the use of ROVs, written by well-known experts in the field to provide a complete training and reference tool. The new edition of this established ROV how-to manual is intended for those involved with small observation class ROVs used for surveying, inspection and research purposes. One of few titles to focus on observation class remotely operated vehicle (ROV) underwater deployment in real conditions for industrial, commercial, scientific and recreational tasksA complete user guide to ROV operation with basic information on underwater robotics and navigation equipment to obtain mission results quickly and efficientlyPacked with hard-won, insider's advice and complete with self-learning questions to aid understanding.
Note Print version record.
Contents Machine generated contents note: pt. 1 INDUSTRY AND ENVIRONMENT -- ch. 1 The ROV Business -- 1.1. The ROV -- 1.1.1. What is an ROV? -- 1.1.2. ROV size classifications -- 1.1.3. Vehicle shape versus mission -- 1.1.4. ROV depth rating by classification -- 1.1.5. Size versus ability to deploy sensors/tooling -- 1.2. Types of ROV services -- 1.2.1. Call-out versus contract work -- 1.2.2. Day rate versus project management -- 1.2.3. Strategy for service package deployment -- 1.3. ROV economics -- 1.3.1. Capital expenditure (CAPEX) versus day rate -- 1.4. ROV services by industry -- 1.4.1. Science -- 1.4.2. Fisheries and aquaculture -- 1.4.3. Military -- 1.4.4. Homeland security -- 1.4.5. Public safety -- 1.4.6.O & G drill support -- 1.4.7. Inspection, repair, and maintenance -- 1.4.8. Construction (O & G as well as civil) -- 1.5. Conclusions -- ch. 2 The Ocean Environment -- 2.1. Physical oceanography -- 2.1.1. Distribution of water on earth -- 2.1.2. Coastal zone classifications and bottom types
Note continued: 2.2. Chemical oceanography -- 2.2.1. Salinity -- 2.2.2. Pressure -- 2.2.3.Compressibility -- 2.2.4. Conductivity -- 2.2.5. Water temperature -- 2.2.6. Density -- 2.2.7. Depth -- 2.2.8. Sonic velocity and sound channels -- 2.2.9. Viscosity -- 2.2.10. Water flow -- 2.2.11. Turbidity -- 2.2.12. Chlorophyll -- 2.2.13. Water quality -- 2.2.14. Dissolved gases -- 2.2.15. Ionic concentration -- 2.2.16. Solar radiation -- 2.2.17. Light and other electromagnetic transmissions through water -- 2.3. Ocean dynamics -- 2.3.1. Circulation -- 2.3.2. Effects of wave pattern upon ROV operation -- pt. 2 THE VEHICLE -- ch. 3 Design Theory and Standards -- 3.1.A bit of history -- 3.1.1. Introduction -- 3.1.2. In the beginning -- 3.2. Underwater vehicles to ROVs -- 3.2.1. Power source for the vehicle -- 3.2.2. Degree of autonomy -- 3.2.3.Communications linkage to the vehicle -- 3.2.4. Special-use ROVs -- 3.3. Autonomy plus: "why the tether?" -- 3.3.1. An aircraft analogy
Note continued: 3.3.2. Underwater vehicle variations -- 3.3.3. Why the tether? -- 3.3.4. Teleoperation versus remote control -- 3.3.5. Degrees of autonomy -- 3.4. Vehicle classifications -- 3.4.1. Size classifications of ROVs -- 3.4.2. Today's observation-class vehicles -- 3.4.3. Today's mid-sized vehicles -- 3.4.4. The ROV "spread" -- 3.5. Design theory -- 3.5.1. Unmanned underwater vehicle objectives -- 3.5.2. Designing for mission efficiency -- 3.5.3. Drag discussion -- 3.6. Standards and specifications -- ch. 4 Vehicle Control and Simulation -- 4.1. Vehicle control -- 4.1.1. Basic thruster control -- 4.1.2. Autostabilization -- 4.1.3. ROV dynamic positioning -- 4.1.4. Logic-driven control -- 4.1.5. Logic drive with goal orientation -- 4.2. Simulation -- 4.2.1. Enter the ROV simulator -- 4.2.2. Physics simulation -- 4.2.3. The future -- ch. 5 Vehicle Design and Stability -- 5.1. Vehicle design -- 5.1.1. Frame -- 5.1.2. Buoyancy -- 5.2. Buoyancy and stability -- 5.2.1. Hydrostatic equilibrium
Note continued: 5.2.2. Transverse stability -- 5.2.3. Water density and buoyancy -- ch. 6 Thrusters -- 6.1. Propulsion and thrust -- 6.1.1. Propulsion systems -- 6.1.2. Thruster basics -- 6.1.3. Thruster design -- 6.2. Thrusters and speed -- 6.3. Electric versus hydraulic -- ch. 7 Power and Telemetry -- 7.1. Electrical considerations -- 7.1.1."So you wanna design an ROV -- are you sure?" -- 7.1.2. Power systems (general) -- 7.1.3. Power system arrangements -- 7.1.4. Rotary joints (a/k/a "slip rings") -- 7.1.5. The ubiquitous ground fault -- 7.1.6. The tether -- 7.1.7. Power source -- 7.2. Control systems -- 7.2.1. The control station -- 7.2.2. Motor control electronics -- ch. 8 Cables and Connectors -- 8.1. Introduction -- 8.2. Definitions -- 8.3. Applications and field requirements, writing specifications -- 8.4. Underwater connector design -- 8.5. COTS underwater connectors -- 8.5.1. Mated pairs -- 8.5.2. Advanced designs -- 8.6. Reliability and quality control -- 8.7. Field maintenance
Note continued: 8.8. Underwater cable design -- 8.8.1. Umbilical and tether cables -- 8.8.2. Power requirements -- 8.8.3. Signal requirements -- 8.8.4. Strength requirements -- 8.8.5. Construction -- 8.8.6. Cable design methodology -- 8.8.7. Conductors -- 8.8.8. Insulation -- 8.8.9. Jacket/sheath -- 8.8.10. Strength member -- 8.8.11. Spare conductors -- 8.8.12. Interconnect cables -- 8.8.13. EM terminations and breakouts -- 8.8.14. Bonding -- 8.8.15. Cable design summary -- 8.9. Testing and troubleshooting -- 8.9.1. Electrical testing, troubleshooting, and predeployment checkout -- 8.9.2. Ohm sift or continuity test -- 8.9.3. MegOhm testing or insulation resistance -- 8.9.4. Hi-Pot or voltage withstand test -- 8.9.5.A time-domain reflectometer -- 8.9.6. Mechanical testing and troubleshooting -- 8.10. Tips from the field -- 8.11. Summary -- Bibliography -- ch. 9 LARS and TMS -- 9.1. Free-flying vehicle deployment techniques -- 9.1.1. Directly deployed/free-flying
Note continued: 9.1.2. Tether management system -- 9.2. TMS-based vehicle deployment techniques -- 9.2.1. Winches -- 9.2.2. Tether management systems -- 9.2.3. Launch and recovery systems -- 9.3. Currents and tether management -- 9.3.1. Tether effects -- 9.3.2. Currents -- 9.3.3. Teamwork and proper tether management -- 9.3.4. Tether snags -- 9.3.5. Tether guides and ROV traps -- 9.3.6. Clump weights and usage -- 9.3.7. Rules for deployment/tether management -- ch. 10 Video -- 10.1. History -- 10.2. How it works -- 10.2.1. The camera -- 10.2.2. Lens optics -- 10.2.3. The signal -- 10.2.4. The display -- 10.2.5.Composite (baseband) video -- 10.2.6. The transmission (RF modulation) -- 10.3. Digital video -- 10.4. Video capture -- 10.5. Video compression -- 10.6. Video over Internet protocol -- 10.7. Video documentation -- 10.8. Documentation and disposition -- 10.9. Underwater optics and visibility -- 10.9.1. Focus error -- 10.9.2. FOV errors -- 10.9.3. Distortion -- 10.9.4. Absorption
Note continued: 10.9.5. ROV visual lighting and scattering -- ch. 11 Vehicle Sensors and Lighting -- 11.1. Vehicle sensors -- 11.1.1. Vehicle navigation sensors -- 11.1.2. Vehicle health monitoring sensors -- 11.2. Vehicle lighting -- 11.2.1. Lighting theory -- 11.2.2. Practical applications -- pt. 3 PAYLOAD SENSORS -- ch. 12 Sensor Theory -- 12.1. Theory -- 12.1.1. History -- 12.1.2. Function of sensors -- 12.1.3. Sensor output -- 12.1.4. Types of sensors -- 12.1.5. Data acquisition -- 12.1.6. Systems -- 12.1.7. Installation -- 12.2. Sensor categories -- 12.2.1. Acceleration/shock/vibration -- 12.2.2. Biosensors -- 12.2.3. Chemical sensors -- 12.2.4. Capacitive/inductive sensors -- 12.2.5. Electromagnetic sensors -- 12.2.6. Flow/level -- 12.2.7. Force/load/weight -- 12.2.8. Humidity -- 12.2.9. Optical and radiation -- 12.2.10. Other sensors -- 12.3.Common ROV sensors -- 12.3.1. Sensor by job type -- 12.3.2. Aquaculture -- 12.3.3. Construction -- 12.3.4. Salvage -- 12.3.5. Science
Note continued: 12.3.6. Structural inspection -- 12.4. The future -- ch. 13 Communications -- 13.1. Overview -- 13.1.1. What is communication? -- 13.1.2. Evolution of data communication -- 13.1.3. Data networking and ROVs -- 13.1.4. Transmission versus communication -- 13.1.5. The OSI networking model -- 13.2. Transmission -- 13.2.1. Basic data transmission model -- 13.2.2. Electrical signal transmission -- 13.2.3. Line characteristics -- 13.2.4. Metallic transmission media -- 13.2.5. Optical fiber -- 13.2.6. Radio -- 13.2.7. The ubiquitous decibel -- 13.2.8. Baseband transmission -- 13.2.9. Modulation -- 13.2.10. Multiplexing -- 13.2.11. Binary signals -- 13.2.12. Directionality -- 13.3.Communication -- 13.3.1. Of bits and bytes -- 13.3.2. Data representation -- 13.3.3. Error control -- 13.3.4. Protocols -- 13.4. Standard protocols -- 13.4.1. TIA/EIA standards -- 13.4.2. RS-232 -- 13.4.3. RS-422/485 -- 13.4.4. Ethernet -- 13.4.5. Universal serial bus -- 13.4.6. Protocol converters
Note continued: ch. 14 Underwater Acoustics -- 14.1. Introduction -- 14.2. Sound propagation -- 14.2.1. Pressure -- 14.2.2. Intensity -- 14.2.3. Decibel -- 14.2.4. Transmission loss -- 14.3. Transducers -- 14.3.1. Construction -- 14.3.2. Efficiency -- 14.3.3. Transducer bandwidth -- 14.3.4. Beam pattern -- 14.3.5. Directivity index -- 14.3.6. Transmitting response -- 14.3.7. Source level -- 14.3.8. Medium beam/narrow beam transducer -- 14.4. Acoustic noise -- 14.4.1. Environmental -- 14.4.2. Noise level calculations -- 14.4.3. Thruster noise -- 14.4.4. Sound paths -- 14.4.5. Sound velocity -- 14.4.6. Reflections -- ch. 15 Sonar -- 15.1. Sonar basics -- 15.1.1. Why sound? -- 15.1.2. Definition of sonar -- 15.1.3. Elements required for sonar equipment -- 15.1.4. Frequency and signal attenuation -- 15.1.5. Active versus passive sonar -- 15.1.6. Transducers -- 15.1.7. Active sonar -- 15.1.8. Terminology -- 15.1.9. Sonar equations -- 15.1.10. Reflectivity and gain setting -- 15.1.11. Sound backscatter
Note continued: 15.1.12. Single- versus multibeam -- 15.1.13. Frequency versus image quality -- 15.2. Sonar types and interpretation -- 15.2.1. Imaging sonar -- 15.2.2. Profiling sonar -- 15.2.3. Side-scan versus mechanically/electrically scanning -- 15.2.4. Single-/dual-/multifrequency versus tunable frequency -- 15.2.5. CHIRP technology and acoustic lens systems -- 15.3. Sonar techniques -- 15.3.1. Using an imaging sonar on an ROV -- 15.3.2. Technique for locating targets with ROV-mounted scanning sonar -- 15.3.3. Interpretation of sonar images -- 15.4. New and emerging technologies -- 15.4.1. Image capture -- 15.4.2. Image rendering -- ch. 16 Acoustic Positioning -- 16.1. Acoustic positioning -- a technological development -- 16.2. What is positioning? -- 16.3. Theory of positioning -- 16.4. Basics of acoustic positioning -- 16.5. Sound propagation, threshold, and multipath -- 16.5.1. Weak signals -- 16.5.2. Noise -- 16.5.3. Multipath -- 16.6. Types of positioning technologies
Note continued: 16.6.1. Frame of reference -- 16.6.2. Short baseline -- 16.6.3. Ultrashort baseline -- 16.6.4. Long baseline -- 16.7. Advantages and disadvantages of positioning system types -- 16.8. Capabilities and limitations of acoustic positioning -- 16.9. Operational considerations -- 16.9.1. Operations in open ocean -- 16.9.2. Operations in ports and harbors -- 16.9.3. Operations in close proximity to vessels and underwater structures -- 16.10. Position referencing -- 16.10.1. Geo-referencing of position -- 16.10.2. Vessel referencing of position -- 16.10.3. Relative referencing of position -- 16.11. General rules for use of acoustic positioning systems -- ch. 17 Navigational Sensors -- 17.1. Payload sensors versus vehicle sensors -- 17.1.1. Division of responsibility between ROV and survey functions -- 17.1.2. Typical survey pod/mux configuration -- 17.2. Gyros -- 17.2.1. Mechanical gyros -- 17.2.2. Ring laser gyros -- 17.2.3. Fiber-optic gyros -- 17.2.4. MEMS-based gyros
Note continued: 17.3. Accelerometers -- 17.3.1. Pendulum accelerometers -- 17.3.2. MEMS-based accelerometers -- 17.4. Inertial navigation systems -- 17.5. Bathymetric sensors -- 17.6. Conductivity, temperature, depth (CTD) sensors -- 17.7. Altimeters -- 17.8. Doppler velocity logs -- 17.9. Inclinometers -- 17.10. Long baseline arrays -- 17.11. Ultrashort baseline arrays -- 17.12.Combined instruments -- ch. 18 Ancillary Sensors -- 18.1. Nondestructive testing definition and sensors -- 18.1.1. Magnetic particle inspection -- 18.1.2. Alternating current field measurement -- 18.1.3. Ultrasonic flaw detection -- 18.2. Metal object detection -- 18.2.1. Active versus passive -- 18.2.2. Active pulse inductance -- 18.2.3. Passive inductance -- 18.2.4. Magnetometers and gradiometers -- 18.3. Hooded Member Detection (FMD) -- 18.3.1. Acoustic FMD -- 18.3.2. Radiographic FMD -- 18.4. Cathodic potential sensors -- 18.5. Ultrasonic metal thickness -- pt. 4 MANIPULATORS AND TOOLING -- ch. 19 Manipulators
Note continued: 19.1. Background -- 19.1.1. Basic robotics -- 19.1.2. Manipulator mechanics and control -- 19.2. Manipulator types -- 19.2.1. Grabbers -- 19.2.2. Dexterous arms -- 19.3. Joint design -- 19.4. Range of motion and workspace -- 19.5. Types of controllers -- 19.5.1. Rate control -- 19.5.2. Position control -- 19.5.3. Force feedback control -- 19.6. Hydraulic versus electrical power -- 19.7. Subsea interface standards -- 19.7.1. Manipulator operation of the interface -- 19.7.2. Manipulator-held tooling -- 19.7.3. Tool deployment unit -- 19.7.4. Remotely operated tooling (dual downline intervention) -- 19.7.5. Tool skid -- 19.7.6. Tooling stabilization techniques -- 19.7.7. Standards summary -- 19.7.8. Subsea facility and tooling design -- 19.7.9. Specific interface standards -- ch. 20 Tooling and Sensor Deployment -- 20.1. Manipulator-operated tooling -- 20.2. Remotely operated (ROV-positioned) tooling and sensors -- 20.2.1. Tooling and sensor skids -- 20.2.2. Tooling deployment unit
Note continued: 20.2.3. Remotely operated tooling (dual down line ROT) -- 20.2.4. Hydraulics -- 20.2.5. Electrical actuation -- 20.3. Conclusion -- pt. 5 IN THE FIELD -- ch. 21 Practical Applications -- 21.1. Explosive ordnance disposal and mine countermeasures -- 21.1.1. Background -- 21.1.2. EOD applications -- 21.1.3. MCM today -- 21.2.Commercial, scientific, and archeological operations -- 21.2.1. High current operations -- 21.2.2. Operations on or near the bottom -- 21.2.3. Enclosed structure penetrations -- 21.2.4. Aquaculture and scientific applications -- 21.3. Public safety diving -- 21.3.1. Public safety diving defined -- 21.3.2. Mission objectives and finding items underwater with the ROV -- 21.3.3. When to use the diver/when to use the ROV -- 21.3.4. Search theory and electronic search techniques -- 21.4. Homeland security -- 21.4.1. Concept of operations -- 21.4.2. Tactics, techniques, and procedures -- 21.4.3. Operating characteristics of ROV size categories
Note continued: 21.4.4. Port security needs -- 21.4.5. Underwater environment of ports -- 21.4.6. Navigation accessories -- 21.4.7. Techniques for accomplishing port security tasks -- 21.4.8. Development of TTPs for port security -- 21.4.9. Results of procedure testing by sizes -- 21.4.10. Inland -- 21.4.11. Offshore -- 21.5. Conclusion -- ch. 22 It's the Little Things That Matter -- 22.1. Standard operating procedures -- 22.1.1. Overall operational objectives -- 22.1.2. Equipment mobilization -- 22.1.3. Operational considerations -- 22.1.4. Predive operations and checks -- 22.1.5. Specific consideration for operational deployment of ROVs -- 22.1.6. Task list and guidelines -- 22.1.7. Postdive procedures -- 22.2. Servicing and troubleshooting -- 22.2.1. Maintenance -- 22.2.2. Basics of ROV troubleshooting -- 22.2.3. Tools and spares for fieldwork -- 22.2.4. Standard preventative maintenance checklist -- 22.2.5. Operational forms -- 22.3. Putting it all together -- 22.3.1. Attention to detail
Note continued: 22.3.2. Training and personnel qualifications -- 22.3.3. Equipment setup considerations -- 22.3.4. Division of responsibility -- 22.3.5. Boat handling -- 22.3.6. Marking the target(s) -- 22.3.7. Methods for navigating to the target -- 22.3.8. Sonar/ROV interaction -- ch. 23 The Future of ROV Technology -- 23.1. Standard ROVs -- 23.2. Fiber-optic linked ROVs -- 23.3. Autonomous ROVs -- 23.3.1. Structurally compliant vehicles -- 23.3.2. AUVs -- 23.3.3. Hybrids -- 23.4. The crystal ball -- 23.5. The bottom line.
Subject Remote submersibles -- Handbooks, manuals, etc.
Robots sous-marins -- Guides, manuels, etc.
Remote submersibles
Genre/Form handbooks.
manuals (instructional materials)
Handbooks and manuals
Handbooks and manuals.
Guides et manuels.
Added Author Wernli, Robert L., author.
Other Form: Print version: Christ, Robert D. ROV manual. Second edition 9780080982885 (OCoLC)855196391
ISBN 9780080982915
0080982913
9780080982885
0080982883
Standard No. AU@ 000052264255
CHNEW 001011507
DEBBG BV042315196
DEBSZ 405351607
NZ1 15295453

 
    
Available items only