Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
Available items only
E-Book/E-Doc

Title Electrochemical energy storage for renewable sources and grid balancing / edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others].

Publication Info. Amsterdam, Netherlands : Elsevier, 2015.
©2015

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource (493 pages) : illustrations (some color)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references at the end of each chapters and index.
Note Online resource; title from PDF title page (ebrary, viewed November 12, 2014).
Summary "Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction"--Provided by publisher
Contents Machine-generated contents note: pt. I Introduction -- Renewable Energies, Markets and Storage Technology Classification -- 1. The Exploitation of Renewable Sources of Energy for Power Generation / Anthony Price -- 1.1. Energy and Society -- 1.2. Energy and Electricity -- 1.2.1. Power System History and Operation -- 1.2.2. Electricity Generation -- 1.2.3. Power Systems Operation -- 1.2.4. Integration of Renewable Energy into Power Networks -- 1.3. The Role of Energy Storage -- 1.4. International Comparisons -- 1.5. Types and Applications of Energy Storage -- 1.5.1. Thermal Energy Storage -- 1.5.2. Hydrogen Energy Storage as an Energy Vector -- 1.5.3. Compressed Air Energy Storage -- 1.5.4. Mechanical Systems -- 1.5.5. Novel Electrochemical Storage -- 1.6. Commercialization of Energy Storage -- References -- 2. Classification of Storage Systems / Dirk Uwe Sauer -- 2.1. Introduction and Motivation -- 2.2. Flexibility Options -- 2.3. Different Types of Classifications -- 2.3.1. Classification According to the Needs of the Grid -- 2.3.2. Classification According to the Supply Time of the Storage System -- 2.3.3. Classification as Single-purpose and Double-use Storage Systems -- 2.3.4. Classification According to the Position in the Grid and the Service Offers -- 2.4. Conclusion -- 3. Challenges of Power Systems / Albert Moser -- 3.1. Power System Requirements -- 3.2. The Role of Storage Systems for Future Challenges in the Electrical Network -- 3.2.1. Transmission System -- 3.2.2. Distribution Network -- 3.3. Demand-Side Management and Other Alternatives to Storage Systems -- 3.3.1. Demand-Side Management -- 3.3.2. Thermal Storage Systems -- 3.4. Supply of Reserve Power -- 3.4.1. Reserve Qualities -- 3.4.2. Reserve Power in Germany -- References -- 4. Applications and Markets for Grid-Connected Storage Systems / Dirk Uwe Sauer -- 4.1. Introduction -- 4.2. Frequency Control -- 4.2.1. Instantaneous Reserve/Spinning Reserve -- 4.2.2. Primary Control Reserve -- 4.2.3. Secondary Control Reserve -- 4.2.4. Tertiary/Minute Control Reserve -- 4.3. Self-supply -- 4.3.1. Market Situation -- 4.3.2. Market Size -- 4.3.3. Operation Profile -- 4.3.4. Barriers to Entry -- 4.3.5. Competitors -- 4.4. Uninterruptible Power Supply -- 4.4.1. Market Situation -- 4.4.2. Operation Profile -- 4.4.3. Competition -- 4.5. Arbitrage/Energy Trading -- 4.5.1. Market Situation -- 4.5.2. Market Size -- 4.5.3. Operation Profile -- 4.5.4. Barriers to Entry -- 4.5.5. Competitors -- 4.6. Load Levelling/Peak-Shaving -- 4.6.1. Market Situation -- 4.6.2. Operation Profile -- 4.6.3. Competitors -- 4.7. Other Markets and Applications -- 4.7.1. Microgrids -- 4.7.2. Island Grids/Off-grid/Weak Grids -- 4.7.3. Transmission and Distribution Upgrade Deferral -- 4.7.4. Stabilizing Conventional Generation/Ramp Rate Support -- 4.7.5. Ancillary Services -- References -- 5. Existing Markets for Storage Systems in Off-Grid Applications / Peter Adelmann -- 5.1. Different Sources of Renewable Energy -- 5.2. Impact of the User -- 5.2.1. Telecom Repeaters -- 5.2.2. Rural Schools and Rural Hospitals -- 5.2.3. Solar-Powered Street Lights -- 5.2.4. Applications in the Leisure Market -- 5.2.5. Rural Electrification: Mini-Grids -- 5.2.6. Solar Home Systems -- 5.2.7. Pico Solar Systems -- 5.2.8. Market Overview of 'Off-Grid' Systems -- 6. Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / Bert Droste-Franke -- 6.1. Introductory Remarks -- 6.2. Selected Studies with German Focus -- 6.3. Selected Studies with European Focus -- 6.4. Discussion of Study Results -- 6.4.1. Required Electric and Storage Power -- 6.4.2. Energy Capacity Need -- 6.4.3. Transferability of the Results to Other Regions -- 6.5. Conclusions -- Abbreviations -- References -- pt. II Storage Technologies -- 7. Overview of Non-electrochemical Storage Technologies / Dirk Uwe Sauer -- 7.1. Introduction -- 7.2. 'Electrical' Storage Systems -- 7.2.1. Superconductive Magnetic Energy Storage -- 7.2.2. Capacitors -- 7.3. 'Mechanical' Storage Systems -- 7.3.1. Pumped Hydro -- 7.3.2. Compressed Air Energy Storage (CAES) -- 7.3.3. Flywheels -- 7.4. 'Thermoelectric' Energy Storage -- 7.5. Storage Technologies at the Concept Stage -- 7.6. Summary -- References -- 8. Hydrogen Production from Renewable Energies-Electrolyzer Technologies / Jurgen Garche -- 8.1. Introduction -- 8.1.1. General Approach -- 8.1.2. Historical Background -- 8.2. Fundamentals of Water Electrolysis -- 8.2.1. Thermodynamic Consideration -- 8.2.2. Kinetic Losses Inside an Electrolysis Cell -- 8.2.3. Efficiency of a Water Electrolyzer -- 8.3. Alkaline Water Electrolysis -- 8.3.1. Cell Components and Stack Design -- 8.3.2. System Layout and Peripheral Components -- 8.3.3. Gas Quality, Efficiency, and Lifetime -- 8.3.4. Regenerative Loads -- 8.4. PEM Water Electrolysis -- 8.4.1. Cell Components and Stack Design -- 8.4.2. System Layout and Peripheral Components -- 8.4.3. Gas Quality, Efficiency, and Lifetime -- 8.4.4. Regenerative Loads -- 8.5. High-Temperature Water Electrolysis -- 8.5.1. Cell Components and Stack Design -- 8.5.2. System Layout and Peripheral Components -- 8.5.3. Electrical Performance, Efficiency and Lifetime -- 8.5.4. Regenerative Loads -- 8.6. Manufacturers and Developers of Electrolyzers -- 8.7. Cost Issues -- 8.8. Summary -- Acronyms/Abbreviations -- References -- 9. Large-Scale Hydrogen Energy Storage / Erik Wolf -- 9.1. Introduction -- 9.2. Electrolyzer -- 9.2.1. Introduction -- 9.2.2. PEM Electrolysis Principle -- 9.2.3. Parameters of an Envisaged Large-Scale Electrolyzer System -- 9.2.4. Development Roadmap for PEM Electrolyzer Systems at Siemens -- 9.3. Hydrogen Gas Storage -- 9.3.1. Underground Hydrogen Storage in Salt Caverns -- 9.3.2. Utilization of Artificial, Mined Underground Salt Caverns and Their Potential -- 9.4. Reconversion of the Hydrogen into Electricity -- 9.4.1. Aspects Related to the Electricity Grid -- 9.4.2. Power to Gas Solution -- 9.5. Cost Issues: Levellized Cost of Energy -- 9.6. Actual Status and Outlook -- Acknowledgment -- References -- 10. Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / Ludwig Jorissen -- 10.1. Introduction -- 10.2. Electrochemical Power Sources -- 10.3. Hydrogen-Based Energy Storage Systems -- 10.3.1. Hydrogen Production by Water Electrolysis -- 10.3.2. Hydrogen Storage -- 10.3.3. Fuel Cells -- 10.4. Energy Flow in the Hydrogen Energy Storage System -- 10.5. Demonstration Projects -- 10.5.1. Freiburg Energy-Independent Solar Home -- 10.5.2. PAFC in Combined Heat and Power Generation in Hamburg -- 10.5.3. The Phoebus Project -- 10.5.4. Utsira Island -- 10.5.5. Myrthe -- 10.5.6. Hydrogen Community Lolland -- 10.5.7. MW-Scale PEMFC Demonstration by FirstEnergy Corporation -- 10.5.3. MW-PEMFC System Operated by Solvay -- 10.6. Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies -- 10.6.1. Short-term Energy Storage Options -- 10.6.2. Storage Efficiency Considerations of the Hybrid System -- 10.7. Case Study of a PV-Based System Minimizing Grid Interaction -- 10.7.1. Energy Harvest from a Photovoltaic System -- 10.7.2. Battery Storage -- 10.7.3. Electrolyzer and Hydrogen Storage System -- 10.7.4. Fuel Cell System -- 10.7.5. Operating Strategy -- 10.7.6. Simulation Result -- 10.8. Conclusions -- 10.9. Summary -- References -- 11. PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / Jason Willey -- 11.1. Introduction -- 11.2. General Technology Description -- 11.2.1. Background of Water Electrolysis -- 11.2.2. Cell and System Designs -- 11.2.3. Typical Applications -- 11.3. Electrical Performance and Lifetime -- 11.3.1. Efficiency -- 11.3.2. Energy and Power Densities -- 11.3.3. Lifetime and Ageing Processes -- 11.3.4. Dynamic Behaviour -- 11.4. Necessary Accessories -- 11.4.1. Electronics -- 11.4.2. Monitoring Systems -- 11.4.3. Safety Devices -- 11.4.4. Diagnostics -- 11.5. Environmental Issues -- 11.5.1. Materials Availability -- 11.5.2. Life-Cycle Analysis
-- 11.5.3. Critical Legislative Restriction -- 11.5.4. Energy for System Production -- 11.6. Cost Issues -- 11.6.1. Installation Costs -- 11.6.2. Operation Costs -- 11.7. Actual Status -- 11.7.1. Overview of Industrial Activities (Existing Applications and Markets) -- 11.7.2. R & D Activities (Major Research Institutions and Companies) -- 11.8. Summary -- References -- 12. Energy Carriers Made from Hydrogen / Ferdi Schuth -- 12.1. Introduction -- 12.2. Hydrogen Production and Distribution -- 12.3. Methane -- 12.4. Methanol -- 12.5. Dimethyl Ether -- 12.6. Fischer-Tropsch Synfuels -- 12.7. Higher Alcohols and Ethers -- 12.8. Ammonia -- 12.9. Conclusion and Outlook -- Abbreviations -- References -- 13. Energy Storage with Lead-Acid Batteries / Patrick T. Moseley -- 13.1. Fundamentals of Lead-Acid Technology -- 13.1.1. Basic Cell Reactions -- 13.1.2. Materials of Construction -- 13.1.3. Cell and Battery Designs -- 13.1.4. Typical Applications -- 13.2. Electrical Performance and Ageing -- 13.2.1. Efficiency -- 13.2.2. Specific Energy/Power; Energy/Power Density -- 13.2.3. Lifetime: Influence of Operating Conditions on Aging Processes -- 13.2.4. Capacity -- 13.2.5. Self-Discharge.
Note continued: 13.2.6. Dynamic Behavioer -- 13.3. Battery Management -- 13.3.1. State-of-Charge Measurement -- 13.3.2. Charging Methods -- 13.3.3. Safety -- 13.4. Environmental Issues -- 13.5. Cost Issues -- 13.6. Past/Present Applications, Activities and Markets -- 13.6.1. Notable Past Battery Energy Storage System Installations -- 13.6.2. Notable Present Battery Energy Storage System Installations -- 13.6.3. Remote Area Power Supplies Systems -- 13.6.4. Research and Development Activities -- 13.6.5. Contribution of Lead-Acid to Global Energy Storage -- Acronyms and Initialisms -- Symbols -- Further reading -- 14. Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / Michael Lippert -- 14.1. Introduction -- 14.2. Ni-Cd and Ni-MH Technologies -- 14.2.1. Ni-Cd and Ni-MH Basic Reactions -- 14.2.2. Materials -- 14.2.3. Alkaline Cell and Battery Designs -- 14.3. Electrical Performance and Lifetime and Ageing Aspects -- 14.3.1. General Charge-Discharge Characteristics -- 14.3.2. Lifetime: Ageing Processes -- 14.3.3. Storage Conditions -- 14.3.4. Self-discharge -- 14.4. Environmental Considerations -- 14.4.1. Materials Availability -- 14.4.2. Legislative Considerations -- 14.4.3. Recycling -- 14.5. Actual Status -- 14.5.1. Overview of Alkaline Batteries for Energy Storage -- 14.6. Conclusion -- Further Reading -- 15. High-Temperature Sodium Batteries for Energy Storage / David A.J. Rand -- 15.1. Fundamentals of High-Temperature Sodium Battery Technology -- 15.1.1. Sodium-Sulphur -- 15.1.2. Sodium -- Metal-Halide -- 15.1.3. Beta Alumina -- 15.1.4. Basic Cell Reactions -- 15.1.5. Materials of Construction -- 15.1.6. Cell and Battery Designs -- 15.1.7. Typical Applications -- 15.2. Electrical Performance and Ageing -- 15.2.1. Efficiency -- 15.2.2. Specific Energy/Power, Energy/Power Density -- 15.2.3. Lifetime: Influence of Operating Conditions on Ageing Processes -- 15.2.4. Self-Discharge -- 15.3. Battery Management -- 15.3.1. State-of-Charge Measurement -- 15.3.2. Safety -- 15.4. Environmental Issues -- 15.4.1. Availability of Materials -- 15.4.2. Life-Cycle Analysis -- 15.4.3. Legislative Restriction -- 15.4.4. Recycling -- 15.4.5. Energy Required for Production -- 15.5. Cost Issues -- 15.5.1. Sodium-Sulphur -- 15.5.2. Sodium-Metal-Halide -- 15.6. Current Status -- 15.6.1. Present Applications and Markets -- 15.6.2. Research and Development Activities -- 15.7. Concluding Remarks -- Acronyms and Initialisms -- Symbols and Units -- References -- Further Reading -- 16. Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / Peter Kurzweil -- 16.1. Energy Storage in Lithium Batteries -- 16.1.1. Basic Cell Chemistry -- 16.1.2. Positive Electrode Materials -- 16.1.3. Negative Electrode Materials -- 16.1.4. Electrolytes -- 16.1.5. Separators -- 16.1.6. Cell and Battery Designs -- 16.1.7. Typical Applications -- 16.2. Electrical Performance, Lifetime, and Ageing -- 16.2.1. Efficiency -- 16.2.2. Power-to-Energy Ratio -- 16.2.3. Energy and Power Densities -- 16.2.4. Lifetime and Ageing Processes -- 16.2.5. Capacity Depending on Temperature and Discharge Rate -- 16.2.6. Self-Discharge Rate -- 16.2.7. Dynamic Behaviour -- 16.3. Accessories -- 16.3.1. Electronics and Charging Devices -- 16.3.2. Monitoring Systems -- 16.3.3. Safety Devices -- 16.3.4. Diagnosis and Monitoring Concepts -- 16.4. Environmental Issues -- 16.4.1. Availability of Lithium -- 16.4.2. Life Cycle Analysis -- 16.4.3. Legislative Restriction -- 16.4.4. Recycling -- 16.5. Cost Issues -- 16.5.1. Cost Projections -- 16.5.2. Anode Materials (Negative) -- 16.5.3. Cathode Materials (Positive) -- 16.5.4. Electrolyte -- 16.6. State-of-the-Art -- 16.6.1. Industrial Activities -- 16.6.2. Research Activities and Challenges -- 16.6.3. Worldwide Annual Turnover -- Abbreviations and Symbols -- References -- 17. Redox Flow Batteries / Maria Skyllas-Kazacos -- 17.1. Introduction -- 17.2. Flow Battery Chemistries -- 17.2.1. Zinc-Based Flow Batteries -- 17.2.2. Redox Flow Batteries -- 17.3. Cost Considerations -- 17.4. Summary and Conclusions -- References -- Further readings -- 18. Metal Storage/Metal Air (Zn, Fe, Al, Mg) / Hajime Arai -- 18.1. General Technical Description of the Technology -- 18.1.1. Basic Reactions -- 18.1.2. Materials -- 18.1.3. Cell and Battery Designs -- 18.1.4. Typical Applications -- 18.2. Electrical Performance, Lifetime, and Ageing Aspects -- 18.2.1. Efficiency as f(T, I) -- 18.2.2. Power-to-Energy Ratio -- 18.2.3. Energy and Power Densities (Volume, Gravimetric) -- 18.2.4. Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) -- 18.2.5. Capacity Depending on Temperature and Discharge Rate -- 18.2.6. Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) -- 18.2.7. Dynamic Behaviour -- 18.3. Necessary Accessories -- 18.3.1. Electronics -- 18.3.2. Charging Devices -- 18.3.3. Necessary Monitoring Systems -- 18.3.4. Safety Devices -- 18.3.5. Needs for Diagnosis and Monitoring Concepts -- 18.4. Environmental Issues -- 18.4.1. Materials Availability -- 18.4.2. Life Cycle Analysis -- 18.4.3. Critical Legislative Restriction -- 18.4.4. Recycling Quotas -- 18.4.5. Energy Needed for the Production -- 18.5. Cost Issues (Today, in 5 years, and in 10 years) -- 18.5.1. Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour -- 18.6. Actual Status -- 18.6.1. Overview of Industrial Activities (Existing Applications and Markets) -- 18.6.2. R & D Activities (Major Research Institutions and Companies) -- 18.6.3. Worldwide Annual Turnover with the Storage Technology, Installed Capacity -- Further Reading -- 19. Electrochemical Double-layer Capacitors / Peter Kurzweil -- 19.1. Technical Description -- 19.1.1. Basic Concepts of Double-Layer-Capacitance -- 19.1.2. Carbon Materials -- 19.1.3. Metal Oxide Technology -- 19.1.4. Solid-State and Polymer Technology -- 19.1.5. Electrolyte Solution -- 19.1.6. Separator -- 19.1.7. Cell and Stack Designs -- 19.1.8. Typical Applications -- 19.2. Electrical Performance, Lifetime, and Ageing Aspects -- 19.2.1. Specific Energy -- 19.2.2. Power and Efficiency -- 19.2.3. Lifetime and Ageing Processes -- 19.2.4. Capacitance -- 19.2.5. Self-discharge Rate -- 19.2.6. Dynamic Behaviour -- 19.2.7. Modelling of Double-layer Capacitors -- 19.3. Accessories -- 19.3.1. Diagnosis and Monitoring Concepts -- 19.3.2. Safety Issues -- 19.4. Environmental Issues -- 19.4.1. Materials Availability -- 19.4.2. Life-Cycle Analysis -- 19.4.3. Legislative Restriction -- 19.5. Cost Issues -- 19.5.1. Costs Per Energy and Power -- 19.6. Actual Status -- 19.6.1. International Performance Data -- 19.6.2. Practical Electrode Fabrication -- 19.6.3. Worldwide Annual Turnover -- Symbols and Units -- Abbreviations and Acronyms -- Further Reading -- pt.
III System Aspects -- 20. Battery Management and Battery Diagnostics / Angel Kirchev -- 20.1. Introduction -- 20.2. Battery Parameters -- Monitoring and Control -- 20.2.1. Battery Voltage -- 20.2.2. Charge and Discharge Current -- 20.2.3. Battery Capacity -- 20.2.4. Battery Resistance and Battery Impedance -- 20.2.5. Battery Power and Battery Energy -- 20.2.6. Battery Temperature -- 20.3. Battery Management of Electrochemical Energy Storage Systems -- 20.3.1. General -- 20.3.2. Battery Management of Aqueous Electrochemical Energy Storage Systems -- 20.3.3. Battery Management of Non-aqueous Electrochemical Energy Storage Systems -- 20.4. Battery Diagnostics -- 20.4.1. Data Storage vs Energy Storage -- 20.4.2. Non-invasive Battery Diagnostics -- 20.4.3. Invasive Battery Diagnostics -- 20.5. Implementation of Battery Management and Battery Diagnostics -- 20.6. Conclusions -- References -- 21. Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / Dirk Uwe Sauer -- 21.1. Motivation -- 21.2. Methodology -- 21.2.1. Parameters Characterizing the Storage Technology -- 21.2.2. Parameters Characterizing the Storage Application -- 21.2.3. Calculated Parameters -- 21.2.4. LCC Calculation -- 21.3. Reference Cases -- 21.3.1. Long-term Storage -- 21.3.2. High-Voltage Grid Load-Levelling -- 21.3.3. Medium-Voltage Grid Peak-Shaving -- 21.3.4. Decentralized Storage Systems in Low-Voltage Grids -- 21.3.5. Electrical Network and Interest Rate -- 21.4. Example Results -- 21.4.1. Long-term Storage -- 21.4.2. High-Voltage Grid Load-Levelling -- 21.4.3. Medium-Voltage Grid Peak-Shaving -- 21.4.4. Decentralized Storages in Low-Voltage Grid -- 21.5. Sensitivity Analysis -- 21.5.1. Dependence on Electricity Price -- 21.5.2. Dependence on Capital Costs (Interest Rate) -- 21.5.3. Dependence on Number of Cycles -- 22. 'Double-Use' of Storage Systems / Dirk Uwe Sauer -- 22.1. Introduction -- 22.2. Uninterruptible Power Supply Systems -- 22.3. Electric Vehicle Batteries -- Vehicle-to-Grid -- 22.3.1. Introduction -- 22.3.2. Car Usage -- 22.3.3. Vehicle Availability -- 22.3.4. Vehicle-to-Grid Concept -- 22.3.5. Applications Where Double-Use is not Useful or is of Only Limited Use -- 22.4. Photovoltaic Home Storage -- 22.4.1. Introduction -- 22.4.2. System Designs and Benefits -- 22.4.3. Unloading the Grid and Grid Services.
Note continued: 22.5. Second Life of Vehicle Batteries -- 22.5.1. Strengths and Opportunities of 'Second-Life' Applications -- 22.5.2. Weakness and Threats of 'Second-Life' Applications -- 22.5.3. Summary on 'Second-Life' Opportunities -- References.
Subject Renewable energy sources.
Renewable Energy
Énergies renouvelables.
TECHNOLOGY & ENGINEERING -- Mechanical.
Renewable energy sources
Added Author Moseley, Patrick T., editor.
Garche, Jürgen, editor.
Adelmann, Peter, contributor.
Other Form: Print version: Electrochemical energy storage for renewable sources and grid balancing. Amsterdam, Netherlands : Elsevier, ©2015 xvi, 473 pages 9780444626165
ISBN 9780444626103 (e-book)
0444626107 (e-book)
0444638075
9780444638076
9780444626165
0444626166
9781322270036
1322270031
Standard No. AU@ 000060077262
AU@ 000067032129
DEBSZ 434132942
GBVCP 825922917

 
    
Available items only