Kids Library Home

Welcome to the Kids' Library!

Search for books, movies, music, magazines, and more.

     
E-Book/E-Doc

Title Transport properties of polymeric membranes / edited by Sabu Thomas, Runcy Wilson, Anil Kumar S., Soney C. George.

Publication Info. Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge MA, United States : Elsevier Ltd., [2018]

Copies

Location Call No. OPAC Message Status
 Axe Elsevier ScienceDirect Ebook  Electronic Book    ---  Available
Description 1 online resource
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Bibliography Includes bibliographical references and index.
Summary Transport Properties of Polymeric Membranes is an edited collection of papers that covers, in depth, many of the recent technical research accomplishments in transport characteristics through polymers and their applications. Using the transport through polymer membranes method leads to high separation efficiency, low running costs, and simple operating procedures compared to conventional separation methods. This book provides grounding in fundamentals and applications to give you all the information you need on using this method. This book discusses the different types of polymer, their blends, composites, nanocomposites and their applications in the field of liquid, gas and vapor transport. Some topics of note include modern trends and applications of polymer nanocomposites in solvent, vapor and gas transport; fundamentals and measurement techniques for gas and vapor transport in polymers; and transport properties of hydrogels. This handpicked selection of topics, and the combined expertise of contributors from global industry, academia, government and private research organizations, make this book an outstanding reference for anyone involved in the field of polymer membranes. Presents current trends in the field of transport of liquid, gas and vapor through various polymeric systems Features case studies focused on industrial applications of membrane technology, along with fundamentals of transport and materialsHelps readers quickly look up a particular technique to learn key points, capabilities and drawbacks.
Note Vendor-supplied metadata.
Contents Machine generated contents note: pt. 1 LIQUID TRANSPORT THROUGH POLYMERS -- ch. 1 Liquid Transport Characteristics in Polymeric Systems: An Introduction / Sabu Thomas -- 1. Introduction -- 2. Factors Affecting the Transport Phenomena -- 2.1. Cohesive Energy Density -- 2.2. Free Volume of the Polymer -- 2.3. Segmental Mobility of the Polymer -- 2.4. Glass Transition Temperature -- 2.5. Distribution of Cross-Links -- 2.6. Nature of Penetrants -- 2.7. Temperature -- 3. Liquid Transport Through Various Polymers -- 3.1. Liquid Transport Through Polymer Composites and Nanocomposites -- 4. Conclusions -- References -- ch. 2 Modern Trends and Applications of Solvent/Gas Transport Through Various Polymers and Their Nanocomposites / Sabu Thomas -- 1. Introduction -- 2. Food Packaging -- 2.1. Oxygen Transmission Rate -- 2.2. Water Vapor Transmission Rate -- 2.3. Carbon Dioxide Transmission Rate -- 3. Gas Separation Technology -- 3.1. Separation of O2 and N2 -- 3.2. Separation of H2 -- 3.3. Removal of Acid Gas From Natural Gas -- 3.4. Olefin/Paraffin Separation -- 3.5. CO2 Sequestration -- 4. Seed Storage -- 5. Barrier Tube for Ink -- 6. Underground Cable Systems -- 7. Tire Inner Lining -- 8. Packaging of Pharmaceuticals and Medical Devices -- 9. Future Applications -- 9.1. Membranes for Printed and Flexible Electronics Devices -- 9.2. External Packaging for Pharmaceutical Products -- References -- ch. 3 Fabrication Methods: Polymer Membranes for Liquid Transport / Sabu Thomas -- 1. Introduction -- 2. Fabrication of Polymer Membranes -- 3. Studies in Polymer Membrane -- 4. Conclusion -- References -- ch. 4 Fundamentals and Measurement Techniques for Solvent Transport in Polymers / Lidmila Bartovska -- 1. Introduction -- 2. Solution-Diffusion Model -- 3. Total Mass Uptake -- Sorption, Desorption -- 3.1. Gravimetric Sorption Measurement -- 3.2. Gravimetric Desorption Measurement -- 4. Preferential Sorption and Composite Isotherm -- 5. Composition of the Sorbed Liquid and Composition of the Swollen Polymer -- 5.1. Composition of the Sorbed Liquid, Individual Sorptions -- 5.2. Composition of the Swollen Polymer -- 6. Dimensional Changes of Membrane Caused by Swelling -- 7. Discussion and Conclusions -- Acknowledgments -- References -- ch. 5 Liquid Transport Through Elastomers / Soney C. George -- 1. Introduction -- 2. Fundamentals of Liquid Transport -- 3. Factors Affecting Liquid Transport Through Elastomers -- 3.1. Nature of Elastomers -- 3.2. Nature of Cross-Links -- 3.3. Nature of Penetrant -- 3.4. Nature of Fillers -- 3.5. Effect of Temperature -- 4. Transport Characteristics of Elastomers -- 4.1. Transport Through Natural Rubber -- 4.2. Transport through Synthetic Elastomers -- 4.3. Swelling of Elastomers in Oil and Water -- 5. Conclusion -- References -- Further Reading -- ch. 6 Liquid Transport Through Thermoplastics / Nellipparambil V. Unnikrishnan -- 1. Introduction -- 2. Diffusion of Moisture/Water Through Thermoplastics -- 3. Diffusion of Organic Solvents Through Thermoplastics -- 4. Conclusions -- References -- ch. 7 Liquid Transport Through Thermosets / Soney C. George -- 1. Introduction -- 2. Liquid Transport Through Thermosets -- 3. Fundamentals of Liquid Transport Studies -- 3.1. Diffusion Coefficient, Sorption Coefficient, and Permeability Coefficient -- 3.2. Mechanism of Transport -- 4. Water Diffusion in Epoxy Resins -- 5. Water Transport Through Polyurethanes and Polyester Resins -- 6. Transport of Organic Liquids Through Polyurethanes and Polyamide-Based Thermosets -- 7. Transport of Organic Liquids Through Polyesters -- 8. Summary -- References -- ch. 8 Transport Properties Through Polymer Membranes / Unnikrishnan Gopalakrishnapanicker -- 1. Introduction -- 2. Fundamentals of Transport Phenomena -- 2.1. Swelling of Polymer Membranes -- 2.2. Sorption of Binary Liquid Mixtures -- 3. Interesting Transport Studies -- 3.1. Transport Properties of Gases and Vapors Through Polymer Membranes -- 4. Conclusion -- References -- ch. 9 Liquid Transport Through IPNs / Sabu Thomas -- 1. Introduction -- 2. General Concepts of IPNs -- 3. Theory of Transport Behavior -- 4. General Procedure of Diffusion Studies -- 5. Factors of Diffusion in IPN -- 6. Phase Morphology of the IPN System -- 7. Cross-Link Density and Molecular Weight -- 8. Sorption Behavior -- 9. Sorption, Desorption, Resorption, and Redesorption -- 9.1. Cycles in Transport Behavior of IPN -- 10. Effect of Temperature on the Transport Behavior of IPN -- 11. Transport Parameters of IPN -- 12. Kinetic and Thermodynamic Parameters of Diffusion in IPN -- 13. Role of Solubility Parameter in IPN Diffusion -- 14. Transport Behavior in IPN Hydrogel -- 15. Applications of Transport Behavior in IPN -- 16. Conclusions -- References -- ch. 10 Liquid Transport Through Polymer Composites / Anila Sebastian -- 1. Introduction -- 2. Diffusion in Elastomers/Composites -- 2.1. Natural Rubber/Carbon Black Composites -- 2.2. Elastomer/Fibers/Particulate-Filled Composites -- 3. Diffusion in Thermoplastic Composites -- 3.1. Diffusion in Fiber-Filled Thermoplastic Composites -- 3.2. Diffusion in Carbon Black -- Filled Thermoplastic -- 4. Diffusion in Thermoset Composites -- 5. Diffusion in Blend Composites -- 6. Diffusion of Organic Solvents in Blends -- 7. Influence of Filler Morphology in Liquid Diffusion -- 8. Applications -- 9. Conclusions -- References -- ch. 11 Liquid Transport Through Polymer Nanocomposites / Sabu Thomas -- 1. Polymer Nanocomposites -- 2. Importance of Liquid Transport Through Polymer Nanocomposites -- 3. Liquid Transport Through Rubber Nanocomposites -- 3.1. Effect of Filler Loading -- 3.2. Effect of Different Fillers -- 3.3. Effect of Processing Conditions -- 3.4. Effect of Functionalization of Filler -- 3.5. Hybrid Filler Effect -- 3.6. Effect of Solvent -- 3.7. Effect of Temperature -- 3.8. Effect of Free Volume -- 3.9. Effect of Morphology -- 3.10. Network Structure Analysis -- 3.11. Theoretical Modeling -- 4. Liquid Transport Through Thermoplastic Nanocomposites -- 5. Liquid Transport Through Thermoset Nanocomposites -- 6. Liquid Transport Through Blend Nanocomposites -- 7. Conclusion and Future Outlook -- References -- ch. 12 Liquid -- Liquid Separation Through Polymeric Membranes / Bhavana Sethi -- 1. Introduction -- 2. Fundamentals Behind PV Separation Process -- 3. PV Membrane Materials and Their Separation Properties -- 3.1. PV Membranes -- 3.2. Polymer Material Selection for PV: Criteria -- 3.3. Performance Characterization of PV Membranes -- 3.4. Membrane Morphology -- 3.5. Membrane Modification -- 3.6. Factors Affecting Membrane Performance -- 4. Applications of PV Polymeric Membranes in Separation of Different Liquid -- Liquid Mixtures: An Overview on Recent Research Advancements -- 4.1. Separation of Water -- Organic Mixtures -- 5. Conclusions and Future Outlook -- References -- ch.
13 Separation via Pervaporation Techniques Through Polymeric Membranes / Toraj Mohammadi -- 1. Introduction -- 2. Separation Characterization Parameters -- 3. Pervaporation Membrane Materials and Their Separation Properties -- 3.1. Water-Selective Polymeric Membrane -- 3.2. Apolar or Organophilic Polymer Membranes -- 4. Pervaporation Transport Models -- 4.1. Thermodynamics of Irreversible Processes -- 4.2. Solution-Diffusion Model -- 4.3. Modified Solution-Diffusion Model -- 4.4. Pore-Flow Model -- 4.5. Modified Pore-flow Model -- 4.6. Thermodynamic Vapor -- Liquid Equilibrium Model -- 4.7. Pseudophase-Change Solution-Diffusion (PPCSD) Model -- 4.8. Resistance-in-Series Model -- 4.9. Computational Fluid Dynamics -- 4.10. Maxwell -- Stefan Model -- 5. Conclusion -- References -- ch. 14 Membrane Filtration Techniques Through Polymer Nanocomposites / Shiny Joseph -- 1. Introduction -- 1.1. Membrane Separation Processes -- 2. Membrane Materials -- 3. Characteristics of Membranes -- 3.1. Surface Morphology -- 3.2. Membrane Porosity -- 3.3. Mechanical Strength -- 3.4. Surface Roughness -- 3.5. Hydrophilicity -- 3.6. Pure Water Flux -- 4. Nanomaterials -- 5. Polymer Nanocomposites -- 5.1. Synthesis Techniques -- 6. Influence of Various Nanoparticles in Polymer Nanocomposite Membranes -- 6.1. Metal Oxides -- 6.2. Silver -- 6.3. Nanoclay -- 6.4. Silica Nanoparticles -- 6.5. Carbon Nanotubes -- 6.6. Graphene and Graphene Oxide -- 6.7. Zeolites -- 7. Transport Through the Membrane -- 8. Conclusion and Future Improvements -- References -- Further Reading -- ch. 15 Liquid Transport Through Biodegradable Polymers / Sabu Thomas -- 1. Introduction -- 2. Effect of Nanofillers on the Transport Properties of Biopolymers -- 2.1. Effect of Nanoparticle Hydration on Transport Properties -- 2.2. Effect of Filler Dispersion Technique -- 2.3. Effect of Natural Fibers on the Transport Properties -- 2.4. Effect of Compatibilizers in Biopolymer Nanocomposites -- 3. Influence of the Nature of Liquid -- 4. Effect of Chemical Cross-Linking and Thermal Treatment of Polymer Matrix -- 5. Effect of Molecular Weight of Polymer Matrix -- 6. Effect of Crystallinity of Polymer Matrix -- 7. Effect of Temperature -- 8. Conclusion -- References -- ch. 16 Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Through Polymer Membranes / Tai-Shung Chung.
Note continued: 1. Principles of Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Processes -- 2. Water Transport Through Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Membranes -- 2.1. Mass Transfer in Membrane Distillation -- 2.2. Mass Transfer in Forward Osmosis -- 2.3. Mass Transfer in Pressure-Retarded Osmosis -- 3. Hot Topics, Challenges, and Future Research Prospects -- References -- pt. 2 GAS TRANSPORT THROUGH POLYMERS -- ch. 17 Introduction to Gas Transport Through Polymer Membranes / Anil Kumar S. -- 1. Introduction -- 2. Membranes -- 2.1. Inorganic Membranes -- 2.2. Polymeric Membranes -- 2.3. Inorganic-Polymer Hybrid Membranes -- 3. Gas Transport Mechanisms in Polymer Membranes -- 3.1. Transport Through Porous Membranes -- 3.2. Transport Through Dense Membranes -- 4. Application -- 5. Conclusion -- References -- ch. 18 Modern Trends and Applications of Gas Transport Through Various Polymers / Ranimol Stephen -- 1. Introduction -- 2. Gas Transport Through Rubbery and Glassy Polymers -- 3. Modern Strategies to "Trade-off Effect: Permeability Versus Selectivity -- 4. Modern Trends and Applications -- 4.1. Natural Gas Processing -- 4.2. Gas Separation Membranes -- 4.3. Food Packaging -- 4.4. Electronic Devices -- 4.5. Petrochemical Industry -- 4.6. Biomedical Field -- 5. Concluding Remarks -- References -- ch. 19 Fundamentals and Measurement Techniques for Gas Transport in Polymers / Toraj Mohammadi -- 1. Introduction -- 2. Fundamentals of Gas Transport Through Membranes -- 2.1. Poiseuille Flow -- 2.2. Knudsen Diffusion -- 2.3. Molecular Sieving -- 2.4. Solution Diffusion -- 3. Measurement Techniques in Gas Separation -- 3.1. Gas Permeation Measurement -- 3.2. Gas Sorption Measurement -- 3.3. Gas Diffusion Measurement -- 3.4. Time-Lag Method -- 4. Summary and Concluding Remarks -- References -- Further Reading -- ch. 20 Theoretical Aspects of Gas Transport in Polymers / Fatemeh Sabzi -- 1. Introduction -- 2. Models Explaining Gas in Polymers -- 2.1. Macroscopic (Continuum) Model -- 2.2. Microscopic (Molecular) Model -- 3. Transport Phenomena in Different Polymeric Systems -- 3.1. Gas Transport in Rubbery Polymers -- 3.2. Gas Permeation in Glassy Polymers -- 3.3. Gas Transport in Crystalline Polymers -- 4. Effects of Environmental Conditions on Gas Transport in Polymers -- 4.1. Temperature Effects -- 4.2. Pressure Effects -- 5. Conclusions -- Acknowledgments -- References -- ch. 21 Gas Permeability and Theoretical Modeling of Elastomers and Its Nanocomposites / Ajesh K. Zachariah -- 1. Introduction -- 2. Variation in Permeability Behavior Due to Different Kinds of Nanofillers -- 3. Variation in Matrix -- 4. Theories in Gas Permeability -- 5. Different Kinds of Models -- 6. Concluding Remarks -- References -- ch. 22 Gas Transport Through Thermoplastics / Jincymol Kappen -- 1. Introduction -- 2. Mechanism of Gas Transport Through Different Thermoplastics -- 3. Effect of Pressure on Permeation -- 4. Effect of Temperature -- 5. Effect of Free Volume and Glass Transition Temperature (Tg) -- 6. Gas Transports Through Polyethylene, Polyamide 11, and Polyvinylidene Fluoride -- 7. Gas Transports Through Polycarbonate -- 8. Gas Transports Through Polyvinyl Chloride -- 9. Influence of Cross-linker -- 10. Influence of Fillers -- 11. Modeling of Gas Transport Properties -- 12. Applications of Thermoplastics With Good Barrier Efficiency -- 12.1. Oxygen Transmission Rate -- 12.2. Water Vapor Transmission Rate -- 12.3. Carbon Dioxide Transmission Rate -- 13. Future Outlook -- 14. Conclusion -- References -- ch. 23 Gas Permeability Through Thermosets / Meyyarappallil S. Sreekala -- 1. Introduction -- 2. Diffusion of Gases in Polymers -- 3. Laws of Gas Permeability -- 4. Modes of Sorption -- 5. Factors Affecting Gas Permeation Phenomena -- 5.1. Nature of Polymers -- 5.2. Crystallinity -- 5.3. Effect of Filler Particles -- 5.4. Effect of Temperature -- 5.5. Free Volume -- 6. Gases Commonly Used for Gas Permeation Study -- 7. Experimental Methods for Determining Gas Permeability -- 7.1. Volume Loss Method -- 7.2. Continuous Flow Method -- 7.3. Constant Volume Method -- 7.4. Gravimetric Method -- 8. Gas Barrier Properties Observed in Various Thermosetting Polymer Composites -- 9. Models Associated With Nature of Fillers -- 10. Thermosetting Polymers -- 10.1. Phenolic Resins -- 10.2. Aminoplasts -- 10.3. Epoxy Resins -- 10.4. Polyurethanes -- 10.5. Polyester Resins -- 10.6. Silicones -- 10.7. Furans -- 11. Methods to Improve the Gas Permeability -- 12. Conclusions -- References -- ch. 24 Gas Transport Through Polymer Blends / Fatemeh Sabzi -- 1. Introduction -- 2. Classification of Polymer Blends -- 3. Conclusions -- 3.1. Effect of Polymer Blend Morphology on Gas Transport ... -- 3.2. Effect of Gas Sorption on Polymer Blend Morphology -- Acknowledgments -- References -- ch. 25 Gas Transport Through Interpenetrating Polymer Networks / Fatemeh Sabzi -- 1. Introduction -- 2. Structure of Interpenetrating Polymer Networks -- 2.1. Sequential Interpenetrating Polymer Network -- 2.2. Simultaneous Interpenetrating Polymer Network -- 2.3. Latex Interpenetrating Polymer Network -- 2.4. Gradient Interpenetrating Polymer Network -- 2.5. Thermoplastic Interpenetrating Polymer Network -- 2.6. Semi -- Interpenetrating Polymer Network -- 2.7. Homo -- Interpenetrating Polymer Network -- 3. Nomenclature of Interpenetrating Polymer Networks -- 4. Gas Transport Phenomena -- 4.1. Characteristics of Interpenetrating Polymer Network -- 4.2. Key Factors Influencing Transport Process -- 5. Gas Transport Phenomena in Samples of Interpenetrating Polymer Networks -- 5.1. (net-Polyethylene Glycol Diacrylate)-sipn-Poly(Ether Imides) -- 5.2. (net-Bismaleimide)-sipn-Poly(Ether Imides) -- 5.3. (net-Polyurethane)-ipn-(net-Polystyrene) -- 5.4. (net-Cardo-bismaleimide)-sipn-Poly(Ether Imide) -- 5.5. (net-Poly 1-vinyl-3-octylimidazolium hexafluorophosphate)-sipn-Poly(Vinyl Acetate) -- 6. Conclusion -- Acknowledgments -- References -- Further Reading -- ch. 26 Activation Entropy for Diffusion of Gases Through Mixed Matrix Membranes / L.F. del Castillo -- 1. Introduction -- 2. Upper Bounds for Polymer Performances and MMMs -- 3. Description of MMMs. The Ideal Case -- 4. "Lumped" Global Mass Transport Through MMMs -- 5. Sorption -- Diffusion Model and Permeability -- 6. Energy Barrier Model to Describe Diffusion and Enthalpic and Entropic Contributions -- 6.1. Amorphous Case -- 6.2. Mixed Matrix Membranes Case -- 7. Tortuosity and Chain Immobilization Factors -- 8. Thermodynamic Interpretation of the Tortuosity and Chain Immobilization Factors -- 9. Determination of the Tortuosity Factor From Experimental Data -- 9.1. Thermal Rearrangement and Carbon Molecular Sieve Membranes -- 10. Obtaining Solubility, Permeability, and Selectivity -- 11. Conclusions -- Acknowledgments -- References -- Further Reading -- ch.
27 Gas Transport Through Polymer/Clay Nanocomposites / Stephane Marais -- 1. Background on Transport Phenomenon -- 2. Measurements Techniques: Permeation and Sorption Processes -- 2.1. Permeation Kinetics -- 2.2. Sorption Kinetics -- 2.3. Sorption Isotherms -- 3. Barrier Properties of Polymer/Clay Nanocomposites -- 3.1. Influence of Exfoliation and Dispersion Level of Nanoclays -- 3.2. Influence of Orientation of Clay Platelets -- 3.3. Influence of Volume Fraction and Aspect Ratio -- 3.4. Influence of the Structure and of the Molecular Mobility of Polymer Chains -- 3.5. Influence of Polymer/Clay Interfacial Area -- 3.6. Influence of the Type of Permeant -- 4. Summary -- References -- ch. 28 Gas Transport Through Polymer Bio-nanocomposites / Sabu Thomas -- 1. Introduction -- 2. Bio-nanocomposites -- 2.1. Biopolymers -- 2.2. Biopolymer-Based Nanocomposites -- 3. Nanoreinforcements -- 3.1. Clays and Silicates -- 3.2. Carbohydrates-Based Nanoreinforcements -- 4. Gas Transport Properties of Bio-nanocomposites -- 4.1. PLA-Based Nanocomposites -- 4.2. PHB-Based Nanocomposites -- 4.3. PBS-Based Composites -- 4.4. Cellulose-Based Nanocomposites -- 4.5. PCL-Based Nanocomposites -- 5. Conclusion -- References -- ch. 29 Gas Transport Through Polymer Composites / Gejo George -- 1. Introduction -- 2. Theory of Gas Transport Through Polymer Composite Membrane -- 3. Types of Polymer Composite Membranes Used for Gas Separation: The Relationship Between Structure and Properties -- 3.1. Composite Membranes Based on Rubbery Polymers -- 3.2. Composite Membranes Based on Glassy Polymers -- 4. Conclusions -- References -- ch. 30 Gas Transport Properties in Packaging Applications / Pilar Hernandez-Munoz -- 1. Introduction -- 2. General Characteristics of Polymers for Packaging -- 3. Mass Transport and Packaging Technologies -- 4. Gas Permeation: Implications and Methods to Control -- 4.1. Permeation in Monolayer Structures -- 4.2. Permeation in Multilayer Materials -- 4.3. Permeation a Required Process in Some Packaging Technologies -- 5. Gas Sorption: Implications and Methods to Control -- 6. Gas Migration: Implications and Methods to Control -- 7. Future Trends -- References.
Subject Polymers -- Transport properties -- Research.
Polymers -- Materials -- Research.
Polymeric composites -- Research.
Transport theory.
Nanocomposites (Materials)
Nanotechnology.
Materials science.
Nanocomposites
Nanotechnology
Polymères -- Propriétés de transport -- Recherche.
Polymères -- Matériaux -- Recherche.
Composites polymères -- Recherche.
Théorie du transport.
Matériaux nanocomposites.
Science des matériaux.
Nanotechnologie.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Materials science
Nanocomposites (Materials)
Nanotechnology
Polymeric composites -- Research
Transport theory
Added Author Thomas, Sabu, editor.
Wilson, Runcy, editor.
Anil Kumar, S. (Professor of chemistry) editor.
George, Soney C., editor.
Other Form: Print version: 0128098848 9780128098844 (OCoLC)991817137
ISBN 9780128098851 (electronic bk.)
0128098856 (electronic bk.)
9780128098844
0128098848
Standard No. AU@ 000061257784
AU@ 000061353338
GBVCP 100748585X

 
    
Available items only